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ABSTRACT

In collaborative learning environments, effective intelligent learn-
ing systems need to accurately analyze and understand the collabo-
rative discourse between learners (i.e., group modeling) to provide
adaptive support. We investigate how automatic speech recogni-
tion (ASR) errors influence discourse models of small group collab-
oration in noisy real-world classrooms. Our dataset consisted of
30 students recorded by consumer off-the-shelf microphones (Yeti
Blue) while engaging in dyadic- and triadic- collaborative learning
in a multi-day STEM curriculum unit. We found that two state-of-
the-art ASR systems (Google Speech and OpenAI Whisper) yielded
very high word error rates (0.822, 0.847) but very different profiles
of error with Google being more conservative, rejecting 38% of
utterances instead of 12% for Whisper. Next, we examined how
these ASR errors influenced down-stream small group modeling
based on pre-trained large language models for three tasks: Ab-
stract Meaning Representation parsing (AMRParsing), on-task/off-
task detection (OnTask), and Accountable Productive Talk predic-
tion (TalkMove). As expected, models trained on clean human tran-
scripts yielded degraded performance on all three tasks, measured
by the transfer ratio (TR). However, the TR of the specific sentence-
level AMRParsing task (.39 - .62) was much lower than that of the
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abstract discourse-level OnTask (.63- .94) and TalkMove tasks (.64-
.72). Furthermore, different training strategies that incorporated
ASR transcripts alone or as augmentations of human transcripts
increased accuracy for the discourse-level tasks (OnTask and Talk-
Move) but not AMRParsing. Simulation experiments suggested
that the models were tolerant of missing utterances in the dialog
context, and that jointly improving ASR accuracy on important
word classes (e.g., verbs and nouns) can improve performance across
all tasks. Overall, our results provide insights into how different
types of NLP-based tasks might be tolerant of ASR errors under
extremely noisy conditions and provide suggestions for how to
improve accuracy in small group modeling settings for a more equi-
table, engaging, and adaptive collaborative learning environment.
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1 INTRODUCTION

Collaborative learning (CL) is a widely used educational approach
involving joint intellectual effort among students in coordination
with teachers [15, 74, 95]. It represents a significant shift away
from traditional teacher-centered or lecture-centered classrooms.
In CL, students usually work together in small groups of two or
more towards a common goal, e.g., mutually developing consensus
on an issue, sharing knowledge independently acquired, or com-
ing up with solutions to problems [19, 37, 40, 43]. Through these
constructive processes and interactive discourse, students are not
simply taking in information, but also creating new ideas and hav-
ing their voices included in the classroom discourse. Thus CL is
increasingly used in today’s classrooms, showing various benefits
such as efficient knowledge acquisition [93], critical thinking [33],
creative thinking [48], and developing collaborative problem solv-
ing skills [36]. Teachers play a key role in orchestrating effective
CL in classrooms [73]. For example, teachers can provide guidance
and content support when students get stuck and might need to
intervene when students go off-task for extended periods of time.
They may also need to help students be respectful of the other
group members, encourage them to maintain classroom norms [73],
and encourage high-quality disciplinary discourse [62]. At the same
time, teachers can benefit from knowledge about insights and ideas
that excite youth in their small group discussions.

A key factor limiting the effectiveness of CL is that it is difficult
for teachers to monitor and coordinate CL activities across multiple
groups at the same time for the simple reason that they cannot
be omnipresent and omniscient. Thus, to increase teachers’ aware-
ness and assist them in orchestrating effective CL in classrooms, an
exciting opportunity is to build adaptive AI-enabled learning envi-
ronments via small-group discourse modeling (or group modeling).
Because discourse is a key product of CL, a promising approach
is to use natural language processing (NLP) to model students’
collaborative discourse [27, 38, 58, 83]. Furthermore, group diver-
sity [16, 39] has been widely studied in CL, impacting on both
individual [13, 86] and group learning [96]. Hence, building effec-
tive learning environments requires adapting to different groups
and individuals, which needs accurate discourse analysis to describe
the behaviors of different groups, and the personality of users in
various dimensions [22, 87]. Recent advances in Large Language
Models (LLMs) [18, 57] offered novel opportunities to model a range
of constructs such as the use of particular talk moves [91], collabo-
rative problem-solving skills [12, 68], disruptive talk detection [65],
and detection of off-task behaviors [8], etc.

However, a key obstacle to deploying accurate language-based
systems in real-world is obtaining accurate transcripts from the
multiparty student discourse. In most CL implementations, multiple
small groups sit close to each other in a classroom resulting in a
myriad of challenges including noisy audio, multiparty chatter, and
other ambient noise [21]. Noisy environments such as these are a
challenge for transcription by automatic speech recognition (ASR)
and diarisation systems (i.e., attributing utterances to individual
students) [68, 79]. While there are massive improvements in state-
of-the-art ASR systems for recognizing adult speech [70, 81], there
is the added complication of recognizing child speech (even in ideal,
noise-free environments), where articulations are less clear than

those of adults [53]. Many differences exist in the acoustic and
linguistic features between child speech and adult speech [31, 53].
Most training data used in developing ASR models comes from
adult speech, therefore underperformance on child speech is not
unexpected due to this domain mismatch [72]. As a result, most
existing attempts to leverage NLP to analyze and support collabo-
rative discourse rely either on typed transcripts from chats or on
human-transcribed speech [23, 26, 38, 58, 83].

Because perfect ASR is unlikely to be achieved in this setting,
there is the question of how accurate ASR needs to be for functional
modeling of small group collaborative learning discourse. We argue
that imperfect ASR is not necessarily a death knell in applications
where whole utterances or dialogues, rather than single words, are
the unit of analysis. For instance, [27] simulated ASR errors input
to a model of teamwork in adult teams in a military scenario and
found that even with a WER of .57, their teamwork classifier only
performed 20% worse. Similarly, [20] and [55] demonstrate effective
human-computer tutorial dialog despite substantial ASR errors.

However, given that modern NLP approaches use LLM-based
models, it is a critical question as to how different types and profiles
of ASR errors affect various discourse models. We investigate this
question by examining the accuracy of two state-of-the-art ASR
systems (Google [35] and Whisper [70]) and the impact of ASR
errors on three typical downstream discourse tasks (§2.3), which
helps adaptive CL by knowledge grounding on student needs, iden-
tifying off-task talk, and understanding student discourse actions,
respectively.

1.1 Background and Related Work

We review relevant organized as (1) domain-agnostic analysis, (2)
domain-specific analysis for classroom conversations.

1.1.1 Domain-agnostic Analysis. ASR systems are generally eval-
uated based on word error rate (WER). This entails aligning the
ASR (hypothesis) transcript to a human transcribed (reference)
transcript, then counting the number of words missed (deletion),
altered (substitution) or inserted relative to the reference. WER is
domain-agnostic, in the sense that the quality of transcription is
assessed purely by straightforward word-level matching between
ground truth and hypothesis. Yet, this may not capture the utility
of ASR for downstream applications when perfect transcripts are
not needed [25, 76]. Further, WER reported alongside published
models may give overly optimistic assessments of real-world per-
formance, as real-world conversations have different characteristics
from the isolated, single-party utterances used in these idealized
experimental evaluations [92]. As analyzed by [34], there are a host
of factors that can impact ASR errors, from acoustic features to
lexicon frequency, word length, and part of speech. Regardless of
the application domain, further breakdown of ASR errors by such
factors can be informative for the design of downstream models.
For instance, retaining phonemic features in ASR and passing these
to an NLP model can be useful for robustness to pronunciation
differences [64]. Domain-specific rescoring of the n-best hypothe-
ses from a domain-general ASR can also yield improvements [56].
In addition to domain-agnostic metrics, many researchers have
explored the use of ASR evaluation methods that are more relevant
to a particular research domain, for instance by considering the
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error rate for domain keywords separately from the remaining vo-
cabulary [60] or by designing metrics that assess how well an ASR
output captures higher-order meaning, for example by using word
embeddings [52].

1.1.2 Domain-specific Analysis of Classroom Conversations. Child
speech is generally associated with higher WER than adult speech
due to differences in vocal parameters (fundamental and formant
frequency), speech patterns [53], and increased variability relative
to adults [14, 31, 66, 81]. The level of background noise typical in a
classroom [94, 98] is also an issue, with multiple concurrent speak-
ers resulting in multiparty chatter [69, 80]. There is also a tension
between optimal recording conditions (such as individual wired
headset microphones on each student) and minimizing invasiveness
to the student (favouring distant placement of microphones, mul-
tiple speakers per recording channel, and allowing movement of
the speakers relative to the recording device) - the latter approach
will degrade the signal with documented impacts on ASR [29, 46].
Other factors to consider include the cost and scalability of the
microphones and whether this disadvantages certain students in
underfunded schools [21].

One efficient domain-specific evaluation method for ASR is to
test it on downstream NLP tasks such as speech-based intelligent
tutoring systems [20, 51], NLP-based learner modeling [24, 84],
and modeling teacher and student talk moves [91]. For example,
a recent study compared ASR performance on modeling collabo-
rative problem-solving skills in different recording environments
either in a school classroom or laboratory space [68]. Using IBM
Watson’s cloud-based ASR API, the WER was higher (78%) in the
classroom setting than in the quieter lab space (54%). Crucially,
the ASR transcripts were used as input to NLP-based models of
collaborative problem-solving skills, reporting a 12% drop in perfor-
mance, though the models still considerably outperformed chance
guessing.

Most relevant to the present work is a previous study on ASR
in the classroom with the end-goal of modeling CL discourse [85].
As a step toward minimally-invasive tracking of classroom collab-
oration, Southwell et al. [85] used low-cost tabletop-placed USB
microphones to record small-group collaboration, and did transcrip-
tion with several commercial ASR services. The results indicated
very high WER (around 90%, particularly dominated by deletions
(i.e., where words were missed by the ASR) and different patterns
of errors for different ASRs. The study also found that most of the
variance in performance occurred at the utterance level rather than
the speaker or recording context. However, this study did not quan-
tify the performance of ASR errors on downstream LLM models,
for example, in the above [68] study.

1.2 Current Study and Contributions

We use a dataset of authentic small-group interactions recorded in
middle school STEM classrooms using inexpensive, commercially-
available equipment. We analyze the ASR errors of two state-of-the-
art models (Google Speech and Whisper ASR) with both domain-
agnostic and domain-specific approaches. Our contributions are as
follows:

First, for domain-agnostic measurements, we conduct a detailed
analysis of different ASR errors produced by the Google and Whis-
per systems. Whereas [85] provided a similar analysis on multiple
cloud-based ASRs including Google, to our knowledge this is the
first systematic analysis of Whisper on student conversation data
in classrooms. We also break downWER according to specific word
classes (part of speech or POS-WER), a novel analysis that will be
inform understanding of how each word class affects downstream
NLP tasks.

Second, for domain-specific modeling, we investigate the impact
of ASR errors on three NLP-based tasks for small group discourse
modeling in adaptive collaborative learning environments.
First we chose an Abstract Meaning Representation parsing
task (AMRParsing) [1], which helps representing course materials
and group dialog in a unified graph-based representation: enabling
explainable and robust personalized content support [4, 44].
Second, we identify Lesson-Focused and Classroom-Focused
utterances (OnTask), which can be used to monitor and provide
real-time support on unfolding CL discourse [30, 49]. Third, we
analyze student utterances with the Accountable Productive
Theory (TalkMove) framework focusing on the accountability
to content knowledge, rigorous thinking, and the learningcom-
munity [62, 89–91]. These three tasks also vary with respect to
specificity of language (with AMRParsing being most specific).
We examine degradation in performance of models trained on
human transcripts and tested on ASR data, and importantly,
address the critical question of whether there are advantages to
training models directly on ASR data and on combining human-
and ASR-data, which is also novel in this context. Whereas the
previous study [85] investigated ASR errors on downstream
NLP, it used semantic similarity and a model of collaborative
problem-solving models trained on a different data set, which did
not afford systematic quantification of the influence of ASR errors
as done here on three different tasks.

Finally, because a large number of utterances are simply not
transcribed by the ASRs in this noisy setting (empty utterances),
we conduct an analysis of how tolerant our LLM-based models
are of empty utterances. More importantly, we also simulate ASR
corrections based on different word classes based on the POS-WER
analysis (see above), and investigate whether this improves per-
formance on downstream user modeling. These results provide
insights for future research on how to improve the modeling of CL
discourse.

Taken together, to build and deploy adaptive AI-enabled learning
environments in real-world noisy classrooms, the present study
provides a comprehensive analysis of ASR errors on three NLP-
based small group modeling tasks of child speech in authentic
classroom environments. It also provides evidence of the feasibility
of ASR in this noisy in-the-wild environment, and guidance on
developing more robust systems for adaptive collaborative learning
environments.
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2 METHODS

2.1 Dataset

All procedures were approved by designated Institutional Research
Boards and data were only collected from students who provided
both personal assent and their parent’s signed consent forms.

2.1.1 Data Collection. The data were collected from a US public
middle school STEM classroom taught by one teacher in four class
periods totaling 30 students in grades 5-8. The subject material
was a STEM curriculum unit ("Sensor Immersion") that encourages
students to work collaboratively in small groups to program and
wire various types of environmental sensors and collect streams
of data on their surroundings [11]. For the CL activities, each con-
senting student group sat around a table with a single Yeti Blue
microphone connected to an iPad to record audio and video. The
choice of this microphone was influenced by audio quality, cost,
power source, form factor, and ease of use. As individual demo-
graphic information was not available on the specific students, we
report the demographics of the school district as a whole. Ethnicity:
62%White, 30% Hispanic, 3% Asian, 3% two or more races, 1% Black,
0.3% American Indian or Alaska Native, and 0.1% Hawaiian/Pacific
Islander. Sex: 49% female, 51% male.

2.1.2 Human Transcription & Automatic Speech Recognition. We
selected 31 five-minute samples for analysis containing 30 unique
speakers; a speaker could be in multiple samples. Samples were
transcribed manually (“human” transcript) by a team of three tran-
scribers. There were 2518 utterances (2179 from students, remainder
from teachers). In situations where speaker’s identity was clear, but
the speech was too indistinct to transcribe, some or all of the utter-
ance content was coded as "[inaudible]". Removing such utterances
resulted in 1936 student utterances, which are the subset we use
in our domain-agnostic analyses below. Different preprocessing in
each downstream task resulted in slightly different numbers of utter-
ances for the domain-specific analysis. All three downstream tasks
are based on the same 31 sessions, which are randomly split at the
session level into training (17), development (6), and testing (8) (all
utterances from a given session are in one of the sets). Audio seg-
ments for utterances were extracted using the manually-annotated
utterance timestamps and transcribed using two ASR models: (1) a
cloud-based commercial provider (Google, video-optimized model
configuration) and (2) a pretrained, open-access model trained on
680,000 hours of speech (Whisper, medium size model) [70]. Both
the human and ASR transcripts were normalized to facilitate com-
parison. Specifically, non-word indicators used by the transcribers
such as "[inaudible]" and "[shouting]" were stripped out, Numbers
were spelled out, punctuation was stripped, words were transposed
to lowercase, and hyphens were replaced by spaces.

2.2 Domain Agnostic Analysis

2.2.1 Word Error Rate and Empty Rate. By standard proce-
dures [92], for each utterance, we used the Levenshtein algorithm
at the word level to find the minimum edit distance between the
reference (human transcript) and the hypothesis (ASR transcript)
by optimizing on the minimum edit operations: substitution (S),
insertion (I) and deletion (D) to align the reference to the hypothesis.
Then the WER is computed by WER = 𝑆+𝐷+𝐼

𝑁ref
, where the 𝑁𝑟𝑒 𝑓 is

the number of words in the reference human transcript. Finally, we
compute the average WER over all utterances. We also analyzed
the ASR empty rate, that is the the proportion of utterances
where the ASR failed to detect any words.

2.2.2 POS-based Word Error Rate. Parts-of-speech (POS) fall into
two categories: closed class and open class. Closed classes are those
with relatively fixed memberships, such as pronouns since new
pronouns are rarely coined. By contrast, nouns and verbs are open
classes — new nouns and verbs like Twitter or Google are contin-
ually created. Breaking down the word errors according to POS
will help us understand the ASR errors jointly with linguistic char-
acteristics in our dataset. We denote this approach POS-WER as
it is computed in a similar way to the standard WER. However,
there are three differences: (1) We used Spacy [41] to produce the
same tokenization for human and ASR transcripts. Critically, it
expands contractions such as ‘It’s‘ into ‘it‘ and ‘’s‘, thus with two
separate POS tags for pronoun and auxiliary verbs. (2) Instead of
reporting the WER as the mean over the WERs for each utterance,
for POS-WER we first group the word-level errors (substitution,
deletion, and insertion) by POS across all utterances, then compute
the overall error rate for each POS. (3) For each substitution and
deletion error, we use the POS of the corresponding aligned word
in the reference for grouping, while for each insertion error (where
there is no specific reference word to which it is aligned), we use the
POS of the inserted word itself. For example, we compute POS-WER
for VERB as WERVERB =

𝑆ref-VERB+𝐷ref-VERB+𝐼hyp-VERB
𝑁ref-VERB

, 𝑁ref-VERB is the
number of VERBS in the whole corpus of human transcripts.

2.3 Domain-specific Analysis

We focused on three group discourse modeling tasks: AMRParsing,
OnTask and TalkMove. AMRParsing offers an utterance-level
graph-based semantic analysis, which highlights student needs
by extracting suggestions and claims in students’ conversations.
Matching the student’s utterance with the curriculum in a uni-
fied AMR graph representation, enables explainable, robust, and
personalized content support [44]. OnTask helps detect whether
students’ discussions lesson-focused or classroom-focused, thus
providing timely and adaptive interventions and encouragement
as needed. By analyzing student discourse actions with learning-
community-focused talk moves, TalkMove can assist teachers and
AI agents in helping students have more effective discussions. For
the above tasks, we first examine how the models trained on a
source setting (e.g., human transcripts) performed when evaluated
on a target setting (e.g., ASR transcripts). We used the transfer
ratio (TR) [67] to measure the difference in model performance
between the source and target setting after adjusting a baseline for
each setting (sourcebase, targetbase). We then investigate whether
ASR-augmented training using either ASR-data alone or com-
bined human-ASR data perform relative to models trained on hu-
man transcripts alone. The details of three user modeling tasks as
noted below.

TR(source, target) =
𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑡𝑎𝑟𝑔𝑒𝑡base
𝑠𝑜𝑢𝑟𝑐𝑒 − 𝑠𝑜𝑢𝑟𝑐𝑒base

(1)

2.3.1 AMRParsing: Knowledge Grounding on Student Needs. AMR
represents the core semantics of a sentence using a graph structure,
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capturing who did what to whom, when, where, and how [1]. An
AMR graph is a directed, acyclic graph with two sets of nodes:
concepts and predicates (representing the actions or predicative
connections between concepts). Edges connect the nodes to indicate
the types of relationships between them. In the first AMR graph
shown in Figure 1, the predicate nodes are “confirm-01” and “go-06”
and the other nodes are concept nodes. The “ARG0” and “ARG1”
labels on the outgoing edges of “go-06” representing the proto-
typical agent and patient role of the action of “go” are “you” and
“basic” respectively. For the ASR transcribed sentence “and then
go base”, the AMR (middle) will partially dropped. Furthermore,
curriculum text can also be parsed into an AMR graph as knowl-
edge base (right-most) and help grounding the understanding of
“go basic” to the “tutorial” subgraph (rectangle) of “MakeCode” pro-
gramming. By systematically constructing a unified graph-based
meaning representation from both curriculum and dialog, AMR
offers knowledge-grounded support such as answering curriculum-
related questions [44] and detecting false claims [100].

AMRParsing refers to a task that automatically produces the
AMR graph structure given a sentence (focusing on student ut-
terance parsing in noisy environments). The state-of-the-art sys-
tems for AMR parsing are all data-driven and mostly sequence-
to-sequence based (seq2seq-based) neural network models. We
use the state-of-the-art SPRING AMR parser [3] to parse student
utterances, which leverages the power of BART (an LLM for a
sequence-to-sequence model) [54]. SPRING takes the tokenized
sentence as input and is trained to generate a sequence of AMR
tokens. Then a postprocessing module is applied to reconstruct the
AMR graph structure. For our use case, we use the off-the-shelf
version of SPRING as our baseline, which we finetune with our
domain-specific data. Our evaluation is based on Smatch [6, 17],
which is the F1 score for the best-effort matching of triples between
gold-standard and parse generated AMR graphs, thus measures the
similarity between two graphs.

2.3.2 OnTask: Lesson and Classroom Focused Discourse. Students’
collaborative discourse often includes interactions that wander
from the task at hand, such as chit-chat, singing, or jokes. Such
speech, categorized in prior work as “off-task” is of considerable
interest to educators and learning scientists [9, 32, 49, 50, 77]. The
capability of an automated system [8, 30] to identify off-task talk
is thus crucial for for understanding and supporting collaborative
discourse. Towards this end, we incorporate “off-task utterance
classification” [30] in our suite of downstream tasks. Our anno-
tation scheme examines two facets of task-related collaborative
dialog, Lesson-focused (LF) speech focuses on discussions about
the specific problem or lesson that the students are required to work
on, such as discussing ideas and solutions. Classroom-focused (CF)
speech is when students discuss any relevant classroom activity,
including peripheral tasks such as team management and other
procedural information (see Table 1 for examples).

We annotate each utterance as focused, unfocused, or unsure,
where a decision cannot be made. Annotations are done separately
for the lesson-focused and classroom-focused categories (see Ta-
ble 1). After developing and refining the guidelines, each transcript
is annotated by two annotators from a pool of five annotators with

experience with linguistic annotation tasks. The annotators are pro-
vided access to the lesson plans and descriptions of the curriculum
unit to understand the context of student discussions. We instruct
the annotators to evaluate every utterance in the context of the
entire transcript, by looking at the past and the future utterances.
Statistics of agreement between both annotators were 64.7% and
71.3% respectively for the LF and CF facets. We resolve disagree-
ments as follows: if either of the annotators was unsure, while
the other was decisive, we assign the decisive value (focused or
unfocused) as the adjudicated label. In cases where one annotator
chose focused whereas the other annotator chose unfocused, we
manually adjudicate using a third trained annotator.

We use an LLM model RoBERTa [57] by adopting the base im-
plementation from the Huggingface Transformers library [97] with
the default hyperparameters of RoBERTa-base (i.e., an embedding
size of 512 and a hidden layer size of 768). We use a dropout proba-
bility of 0.1 on the attention layers and the hidden layers. We train
for 50 epochs, with early stopping based on the F1 score on the
development set. We use the AdamW optimizer [47] and a learning
rate of 1e-5. We focus on the F1 score pertaining to detecting the LF
and CF classes as our outcome metric. Our best models on human
data use 5 previous utterances as the dialogue context to predict
the label for the current utterance.

2.3.3 TalkMove: Understanding Student Discourse Actions. We
also analyze students’ discourse based on Academic Productive
Talk theory (TalkMove) [61]. This discourse framework empha-
sizes high-impact “talk moves” of either a student or teacher in
relation to knowledge-building discourse [62]. Student talk moves
are discourse actions such as making claims, using reasoning, relat-
ing to other students’ actions, and asking questions. Understanding
how the students are actively and equitably engaged in challenging
academic work can orchestrate personalized [90] and equitable
learning [89] environment. The task TalkMove is to automatically
classify each student utterance into a talk move label as shown
in Table 2. Prior works on predicting teacher and student talk
moves [42, 78, 89], have yet to evaluate the impact of ASR errors
on these models.

We mainly focus on the four student talk moves as shown in Ta-
ble 2. There is a ‘None‘ label for those utterances that do not cor-
respond to any talk moves and a ‘Not Enough Context‘ label for
those utterances that human annotators deemed not classifiable
given limited context. The talk moves are consensus coded by two
trained coders. 1 Given the immense class imbalance as shown
in Table 2, we merged the talk moves into three categories (Learn-
ing Community [LC], None, or Other) and the focus is on detecting
LC moves.

To make a fair cross-task comparison on them, we use the same
model architecture as our OnTask model and the same input pre-
processing, dialog context modelling and training setup. Here, our
best model setting is with window size 6 (instead of window size 5
in OnTask). We report the macro F1 score over all three labels.

1For utterances that contain multiple sentences, we annotate the talk moves for each
sentence first, and use the majority code as the label for the whole utterance, when
there are multiple sentences in the utterance.
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Figure 1: AMR for human transcribed utterance “No, no, no, no, no. And then go basic” (left-most), AMR for ASR transcribed

utterance “and then go base” (middle), and AMR for curriculum text “MakeCode has basic and advanced tutorials." (right-most).

Table 1: Examples of utterances and label distribution for the Lesson-focused facet and the Classroom-focused facet in training

data.

Category Description Label Counts Example

Lesson
Focused

Whether related to the specific class room topic that the students are
working on, including discussions about concepts, or about the artifact
they are working with.

✓ 723 This is actually a different button.
✗ 198 What are you doing over there [partner]?
unsure 25 We should [inaudible].

Classroom
Focused

Any relevant classroom activity, including peripheral tasks like intro-
ductions, preparations to work on an exercise, team management

✓ 823 Teacher, their computer shut off.
✗ 198 Do your dino singing.
unsure 25 “Here”,“Do you mean [inaudible]”

Table 2: Student Talk Moves Included in the training data.

Label Category Original TalkMove Description Counts Example

NONE None None Not a Talk Move 299 “OK”,“Alright”,“Let’s do the next step.”

LC
Learning Com-
munity

Relating to another stu-
dent

Using, commenting on, or asking questions about a classmate’s
ideas

512 “My bad”, “Press the button”,“You need to code that”

Learning Com-
munity

Asking for more info Student requests more info,says they are confused or need help 3 “I don’t understand number four.”

OTHER

Content Knowl-
edge

Making a claim Student makes a math claim, factual statement,or lists a step in
their answer

41 “We should place the wire on P2.”,“We could do a
winky face next.”

Rigorous Think-
ing

Providing evidence or
reasoning

Student explains their thinking,provides evidence,or talks about
their reasoning

1 “Because that’s how loud our class usually is.”

N/A Not Enough Context The context is not enough to categorize the talk move 139 “Here”,“Do you mean [inaudible]”

2.4 Simulation-based Analysis

2.4.1 Simulating Empty Utterances. AMRParsing is an utterance-
level parsing task, where each utterance𝑢𝑖 is parsed without consid-
ering the dialogue context. In contrast,OnTask and TalkMove clas-
sify each utterance 𝑢𝑖 given a sequence of previous dialogue his-
tories {𝑢𝑖−𝑤 , 𝑢𝑖−1} with a window size 𝑤 = 5 or 6 respectively.
Empty utterances may exist in the dialogue history, but it is unclear
how they impact the classification of non-empty utterances. We
therefore design comparative studies for two questions: (1) How

does context help each task? Based on full human transcripts,
we compare our best model for each task with a model using no
context to predict each utterance 𝑢𝑖 . (2) How does the lack of

context affect the models’ accuracy? We simulate 5 test sets
with different empty utterance rates [0.04, 0.08,0.10, 0.30, 0.50] on
human transcripts, then we compare the evaluation performance
on the simulated datasets with the main results on the original
human transcripts (where the empty rate is 0).

In total, we evaluate our best models trained on human tran-
scripts over all 6 empty rate settings, [0, 0.04, 0.08,0.10, 0.30, 0.50].
For each empty rate, we generate 3 datasets by randomly mask-
ing out the empty utterances in the human transcripts, then we
report the average performance over the 3 runs, and summarize the
performance changes compared to their corresponding baselines.

2.4.2 Simulating Error-fixes based on POS tags. Rather than sim-
ulating ASR errors from clean human text for data-augmented
training [20, 27, 28, 82, 88], we mainly investigate what kinds of
improvements on ASR can help our LLM-based models. Hence, we
simulate how to improve the ASR by incrementally fixing different
kinds of word errors (with respect to POS) until utterances are fully
restored to their human transcription source.

When calculating the WER between ASR and Human tran-
scripts (§2.2.1), the edit distance algorithm produces word
alignment and the edit operations needed to edit the human
utterance into the ASR utterance. In order to simulate various
improvements to ASR, we reverse those edit operations to edit
the ASR utterance back to the human utterance. For the pair of
human and ASR utterances in Figure 1, there are 5 deletion errors
of missing “No”(with a POS as INTJ), and one substitution error of
replacing “basic”(ADVERB) with “base”(NOUN). First, when fixing
the word errors related to POS ADVERB, the ASR utterance will
become “and then go basic” by substituting the wrong word “base’
with“basic". By fixing the word errors related to both ADVERB and
INTJ, the ASR utterance will be recovered to the original human
utterance by inserting five “No’s" in front.

According to Table 4, PRON, VERB, NOUN, INTJ, AUX are the
top 5 most frequent word classes in our dataset. To simplify the
analysis, we merged AUX-VERB with VERB together as “VERB”
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for the simulation studies. Starting with Google or Whisper ASR,
we simulate the error fixes for each word class one-by-one until
we have recovered the corresponding human transcript. For the
produced test set after each fix, we calculate its WER, and also
evaluate it with our best model trained on human transcripts.

3 RESULTS

3.1 Domain Agnostic Analysis - Speech

Recognition Errors

3.1.1 Word Error Rate and Empty Rate. Overall, word error rates
are comparable across ASR engines and very high: 82.2% for Google
and 84.5% for Whisper (Table 3). However, the two ASRs had rather
different patterns of errors with Google being more conservative
(Deletions > Substitutions > Insertions) compared to Whisper (Sub-
stitutions > Insertions > Deletions). As a result, Google produces
an empty ASR rate of 37.7% whereas Whisper has an empty rate
of just 12.1%. On the subset of utterances with non-empty ASR,
Whisper has a higher WER (82.5%, n=1701) than Google (71.4%,
n=1206), again suggestive of a tradeoff between the two.

3.1.2 Word Error Breakdown by Part Of Speech. Table 4 breaks
down word errors by each POS. We noted the following patterns in
the data. First, POS-WERs vary more widely for open classes (range
0.65 to 1.04 on Google, and 0.52 to 1.27 on Whisper) compared to
closed classes (range 0.56 to 0.77 on Google, and 0.52 to 0.68 on
Whisper)). Second, PRON (pronouns), VERB, AUX (auxiliary verbs),
NOUN, and INTJ (interjections) are the five most frequent word
classes in the recordings. Among them, Google ASR has the highest
POS-WER (0.82) on INTJ, while Whisper’s POS-WER is 0.64 for
INTJ. The two are similar for AUX, whereas Google has higher POS-
WERs for PRON, VERB, and NOUN. Third, we observe the same
finding as in standardWER, across all POS tags, namely that Google
has a relatively higher deletion rate, while Whisper has a higher
insertion rate. Note that POS-WER for Whisper is on average lower
than for Google, in contrast to the overall WER; this is because POS-
WER is calculated using different text normalization and aggregated
at the corpus-level instead of averaged over utterances.

3.2 Results on Downstream Tasks

3.2.1 Training on Human Data. The transfer ratio as shown in
Equation 1 compares the relative change as shown below. Thus, a
TR of 1 would indicate perfect transfer whereas a TR of 0.5 would
indicate a 50% reduction in performance across settings. It is also
possible for TRs to exceed 1 in cases where performance is higher
in the target compared to the source setting. Table 5 shows the
performance (Smatch) for AMRParsing and F1 scores for the other
two tasks along with the transfer ratios. The top panel presents
results for baselines for each task. Baselines for OnTask and Talk-
Move are obtained by averaging the performance on 10 random
runs (by uniformly predicting a random label), while the baselines
for AMRParsing use the off-the-shelf SPRING parser [3] with-
out finetuning on our dataset. Note that baselines vary due to
the removal of empty utterances in the test set when computing
scores. The bottom panel shows model results along with the trans-
fer ratio (TR) in parentheses. Human indicates human transcripts.
For Google, we use Google ASR, but keep the original ground

truth labels and include all utterances (i.e., even empty utterances)
for fair comparisons. However, in a real-world application, we
wouldn’t have the human transcripts to align the ASR results to,
so the empty utterances would not be included. Hence, we add a
real-world setting called Googlefilter, which filtered out those
empty utterances. We use the same setting for Whisper: Whis-
per andWhisperfilter. After this part, we will only consider the
real-world Googlefilter andWhisperfilter for the remaining ex-
periments.

We found that for AMRParsing, the models finetuned on human
data degraded to the performance similar to off-the-shelf baseline
when evaluated on Google ASR. Overall transfer ratios were low
(0.39-0.46 for Google, and 0.62 on Whisper). Results were more
positive for the other two downstream tasks with above-chance
performance in all cases and transfer ratios as high as 0.94. Overall,
as could be expected, TRs were higher for cases where empty utter-
anceswere filtered out. Therewas also considerable variance by task
and ASR. Whereas, the ASRs were quite similar for Lesson-Focused
OnTask predictions, Whisper yielded similar transfer ratios (.59
to .72) than Google (.64-.72) for TalkMove, whereas Google had
much higher transfer ratios (.88 to .94) for Classroom-Focused On-
Task predictions.

3.2.2 Results on ASR-Augmented Training. Here, we focus on the
relative performance change of ASR-augmented training compared
to training on human transcriptions reported above. As the four
bars for each task in Figure 2, the blue and red ones mean the same
model trained on clean human transcripts but evaluated on human
and ASR transcripts respectively (where performance dropped dras-
tically); the yellow and green means two models trained on ASR
only and combined human-ASR respectively, while both evaluated
in the real-world ASR setting. For AMR parsing, both ASR-only
and combined human-ASR training under-perform models trained
on human data for both Google and Whisper. This result likely
occurred because using ASR utterances with human data for train-
ing confuses the seq2seq-based models with respect to the token
alignments between the source and target sequences. Take Figure 1
as an example, if the model is trained to forcibly map the source
sequence (ASR utterance) “and then go base” into the ground-truth
graph on the left, then the left branch of that AMR graph will have
no mapping in the source.

Findings for the discourse level tasks (OnTask and TalkMove)
were more promising. There was always a setting (yellow or green)
that outperformed training on human transcripts alone (red).
Furthermore, the models trained only on Whisper (yellow
on Figure 2b) consistently improve performance on both On-
Task (4.65%,10.81%) and TalkMove (3.26%), while training on
Google was largely unsuccessful. On the other hand, combined
human-ASR training(green) also sometimes outperforms the
human transcripts along models (red), but is not consistent. Overall,
models trained only on Whisper (yellow on Figure 2b) will lead to
robust performance in our cases.

3.3 Results on Simulation-based Analysis

3.3.1 Impact from Empty Utterances in the Context. As shown in Ta-
ble 6, all reported performances are based on our bestmodels trained
on human transcripts. Each column denotes a setting of different
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Table 3: Metrics for ASR errors: mean values computed over student utterances (n=1936). We report two rows of word error rate

results for All utterances(the first row) and Non-Empty utterances(the second row).

ASR Empty rate Substitution Deletion Insertion WER

Google 0.377 All 0.209 0.552 0.062 0.822
Non-Empty 0.335 0.280 0.099 0.714

Whisper 0.121 All 0.349 0.216 0.282 0.846
Non-Empty 0.397 0.108 0.321 0.825

Table 4: Word errors broken down by POS for Google and Whisper ASR. Bold numbers show the Top five POS in our dataset.

Google Whisper

POS Counts POS-WER Substitution Deletion Insertion POS-WER Substitution Deletion Insertion
Open Classes

ADJ 402 0.65 0.26 0.37 0.02 0.62 0.31 0.14 0.17
ADV 845 0.67 0.18 0.47 0.03 0.52 0.22 0.19 0.10
INTJ 973 0.82 0.12 0.68 0.01 0.64 0.30 0.27 0.08
NOUN 1111 0.74 0.30 0.41 0.02 0.71 0.38 0.15 0.17
PROPN 76 1.04 0.36 0.46 0.22 1.27 0.54 0.24 0.50
VERB 1719 0.68 0.21 0.43 0.04 0.61 0.27 0.17 0.17

Closed Classes

ADP 520 0.635 0.22 0.38 0.04 0.56 0.24 0.15 0.17
AUX 1014 0.64 0.16 0.47 0.04 0.64 0.21 0.18 0.25
CCONJ 247 0.717 0.17 0.50 0.05 0.53 0.20 0.19 0.13
DET 490 0.561 0.16 0.38 0.03 0.52 0.21 0.13 0.18
NUM 267 0.772 0.35 0.42 0.01 0.68 0.36 0.23 0.08
PART 420 0.657 0.22 0.39 0.05 0.56 0.20 0.13 0.24
PRON 2074 0.65 0.15 0.46 0.04 0.58 0.20 0.19 0.20
SCONJ 231 0.68 0.17 0.47 0.05 0.57 0.26 0.18 0.13

Table 5: Results of Comparative Study on ASR Evaluation for AMRParsing, OnTask and TalkMove tasks.

AMRParsing OnTask TalkMove

Testing Smatch Lesson-Focused F1 Classroom-Focused F1 Learning Community F1
(TR) (TR) (TR) (TR)

Base Human 0.55 0.27 0.26 0.32
Base Googlefilter 0.31 0.27 0.26 0.32
Base Google 0.26 0.27 0.26 0.31
BaseWhisperfilter 0.38 0.27 0.27 0.32
BaseWhisper 0.36 0.27 0.27 0.31
Human 0.68 (1.00) 0.49 (1.00) 0.42 (1.00) 0.69 (1.00)
Googlefilter 0.37 (0.46) 0.43 (0.73) 0.40 (0.88) 0.59 (0.72)
Google 0.31 (0.39) 0.42 (0.68) 0.41 (0.94) 0.54 (0.64)
Whisperfilter 0.46 (0.62) 0.43 (0.72) 0.37 (0.63) 0.59 (0.72)
Whisper 0.44 (0.62) 0.41 (0.64) 0.37 (0.63) 0.53 (0.59)

0.0

0.2

0.4

0.6

0.8

AMRParsing OnTask-LF OnTask-CF TalkMove

Human => Human Human => Google
Google => Google (Human+Google) => Google

(a) ASR-Augmented Training with Google ASR

0.0

0.2

0.4

0.6

0.8

AMRParsing OnTask-LF OnTask-CF TalkMove

Human => Human Human => Whisper
Whisper => Whisper (Human + Whisper)=> Whisper

(b) ASR-Augmented Training with Whisper ASR

Figure 2: Main Results for ASR-Augmented Training on AMRParsing, OnTask (Lesson-Focused, Classroom-Focused) and

TalkMove. In the legend, "A=>B" means the model is trained on A, and evaluated on B.

empty rates, the performances are averaged over 3 random runs.
Our answers to the two questions (§2.4.1) are (1) compared to the

models without using any dialog context (Human0), our best mod-
els using context improve 4.55% on TalkMove, but don’t consis-
tently help on OnTask. (2) empty utterances in the dialog context
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Table 6: Analysis of the impact of empty utterances in the dialogue context. The numbers in parentheses are the relative

performance changes compared to their corresponding baselines.

Empty rate 0 0.04 0.08 0.1 0.3 0.5
Baseline (%) Human0 Human

OnTask

LF F1 0.49 (2.08) 0.48 (-1.84) 0.48 (-2.04) 0.48 (-2.04) 0.46 (-6.12) 0.44 (-10.20)
CF F1 0.42 (-2.32) 0.41 (-2.38) 0.41 (-2.38) 0.44 (4.76) 0.41 (-2.38) 0.39 (-7.14)

TalkMove F1 0.69 (4.55) 0.69 (0.00) 0.69 (0.00) 0.68 (-1.45) 0.65 (-5.80) 0.67 (-2.90)

only slightly hurt the performance when empty rates are less than
0.3 (6.12%, 2.38% and 5.80% drop on OnTask Lesson-Focused F1,
OnTask Classroom-Focused F1, and TalkMove F1 respectively).
Hence, we conclude that on both discourse-level tasks, the dialog
context contributes much less than the current utterance for our
classification, and TalkMove is more context-sensitive than On-
Task. This simulation also indicates that the main performance
drop when transferring from human to ASR is due to the word
errors in the current utterances rather than the empty utterances
in the dialog context.

3.3.2 Error Tolerance on Different Word Classes. In Table 7, the first
row shows the source ASR datasets (Google and Whisper) where
the simulation started from. The last row is the human test set with
all errors fixed ideally. The second last row is the resultant test
dataset after we fixed errors according to all POS (Ideally, reversing
the edit options calculated in edit distance should exactly recover
to zero WER (the same as the original human transcripts). However,
due to the text normalization issue, e.g., one word ‘it’s’ or ‘gotta’
may be split into two tokens for POS. Then after full fixing, some
utterances still have around 1 or 2 word errors). Vertically, Table 7
gradually shows howWER and the model performance will change
as the fixes continue. The WERs of Google and Whisper almost go
down. Gradually fixing the word errors generally helps on our three
tasks, and also suggests the following findings: (1) comparing two
ASRs, we noticed that simulated error fixes help more on Google
than Whisper. On Whisper, only when jointly fix VERB, PRON,
NOUN, and INTJ will help all tasks. Before that, the error fixes by
individual POS didn’t help TalkMove. (2) comparing across tasks,
continual improvingWERwill largely help on our lexically sensitive
AMRParsing tasks, while not always helping on discourse tasks.
The three tasks also benefit differently in an order (AMRParsing >
OnTask > TalkMove). For example, fixing the word errors from
0.77 to 0.31 on Google, and 0.75 to 0.31 onWhisper (consider the row
of jointly fixing VERB, NOUN, INTJ and PRON), this will help most
on AMRParsing performance on Google and Whisper by (74.19%,
31.83%) respectively, while helping relatively less on OnTask and
TalkMove. (3) comparing across different POS sets, jointly fixing
VERB and NOUN robustly improves model performance for all
tasks. However, only fixing individual POS may not help on some
tasks. For example, although frequent, INTJ (e.g., Ouch! Hi! Oh!)
contributes less than VERB in all three tasks. While PROUN helps
on AMRParsing and OnTask, but not on TalkMove. However,
when fixing PRON and INTJ jointly with VERB and NOUN, the
performance boosts more on all tasks.

4 DISCUSSION

We investigated the impact of the noisy acoustic environment
of collaborative group work in a K-12 classroom on downstream

NLP-based group modeling. Using two state-of-the-art ASR sys-
tems (Google and Whisper) to transcribe the audio, we conducted
three extensive comparative studies: (1) domain-agnostic analysis,
(2) domain-specific analysis for classroom conversations, and (3)
simulation-based analysis.
Main Findings: We found that both Google and Whisper suffer
from high WER (0.822, 0.847) for student speech in the classroom,
which replicates similar findings in previous work [67, 85]. We also
found that Google is more conservative than Whisper in transcrib-
ing speech, thus returning more empty transcripts. Under this noisy
classroom environment, we built models for three group modeling
tasks (AMRParsing, OnTask and TalkMove) based on LLMs. Al-
though we expect that models trained on human transcripts will
result in a performance drop when evaluated on noisy ASR tran-
scripts, the pertinent issue is to quantify the amount of performance
reduction. Here, when evaluating on ASR transcripts, we found that
the models were more robust for predicting the abstract discourse-
level analysis (i.e., OnTask and TalkMove), but performance on
AMRParsing dropped drastically to the performance of the off-the-
shelf model. The transfer rate of AMRParsing (.39 - .62) is much
lower than that of the abstract discourse-level OnTask (.63- .94)
and TalkMove tasks (.64-.72). Since the real-world deployment of
group modeling in classrooms would necessarily only have ASR
input, we then asked if augmenting the training data with ASR
transcripts would improve generalization. We found that simply
augmenting the training data with ASR transcripts did not improve
performance on the lexically-sensitive AMRParsing, but did for
the discourse level tasks. Overall, the results do suggest potential
advantages to training models directly on ASR data and a combi-
nation of human-ASR data. Finally, simulation-based analysis on
empty utterances shows that our LLMs are robust to the missing
context in OnTask and TalkMove tasks, while the main perfor-
mance drops when transferring from human to ASR are due to the
word errors. Fixing important word classes (e.g., verbs and nouns)
can robustly help over all the tasks. The simulated error fixes help
more on Google than on Whisper, and more on lexically sensitive
AMRParsing task than abstract discourse-level tasks.
Limitations and Future Work A limitation of this work is that
we only compared two off-the-shelf state-of-art ASRs: Google and
Whisper. Including other existing ASR models (such as Watson,
REV) will increase the diversity and coverage of our analysis. An-
other limitation lies with the LLMs we used for our three applica-
tions. We mainly rely on Roberta(base) for OnTask and TalkMove,
however, it is known that various larger LLMs with emergent abili-
ties may lead to different comparison results [45, 63]. Besides that,
another limitation is the ASR-augmented training strategies. When
considering the joint strategy of using both human and ASR, we
always use the full human and ASR datasets. Better strategies for
mixing human and ASR datasets still require further investigation.
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Table 7: Simulating error-fixes based on parts-of-speech. Bold numbers highlight the error fixes that lead to performance

boosts.

Google Whisper
WER AMRParsing OnTask TalkMove WER AMRParsing OnTask TalkMove

Smatch LF F1 CF F1 F1 Smatch LF F1 CF F1 F1
ASR 0.77 0.31 0.42 0.41 0.54 0.75 0.44 0.41 0.37 0.60
+ PRON 0.68 0.34 0.49 0.43 0.58 0.68 0.45 0.44 0.42 0.56
+ VERB 0.65 0.41 0.45 0.41 0.57 0.62 0.48 0.46 0.44 0.58
+ NOUN 0.66 0.34 0.46 0.42 0.61 0.68 0.45 0.49 0.42 0.59
+ INTJ 0.64 0.37 0.44 0.42 0.55 0.68 0.45 0.43 0.39 0.56
+ PRON + INTJ 0.54 0.40 0.49 0.44 0.57 0.59 0.48 0.45 0.40 0.56
+ VERB + NOUN 0.54 0.44 0.46 0.43 0.61 0.53 0.51 0.49 0.47 0.62

+ VERB + NOUN + INTJ 0.41 0.49 0.45 0.46 0.62 0.44 0.54 0.50 0.43 0.63
+ VERB + NOUN + PRON 0.45 0.50 0.47 0.47 0.63 0.40 0.55 0.49 0.47 0.63
+ VERB + NOUN + INTJ + PRON 0.31 0.54 0.52 0.45 0.64 0.31 0.58 0.52 0.43 0.64

+ All OPEN 0.33 0.52 0.48 0.48 0.66 0.39 0.56 0.53 0.46 0.64
+ ALL CLOSE 0.56 0.40 0.48 0.45 0.57 0.52 0.48 0.46 0.40 0.57
+ ALL 0.11 0.65 0.49 0.42 0.65 0.10 0.66 0.49 0.46 0.66
Human 0.00 0.68 0.49 0.42 0.69 0.00 0.68 0.49 0.42 0.69

Potential Applications: This work supports the provision of
adaptive collaborative learning in real-world noisy classrooms, en-
abling teachers and AI agents to facilitate more effective collabo-
rative learning experiences. Our empirical analysis suggests that
despite considerable ASR errors in noisy classroom discourse, LLMs
for coarse-grained discourse-level tasks (e.g., OnTask and Talk-
Move) that do not require perfect transcriptions, can be used for
group modeling, and there might be benefits to adopting train-
ing strategies that incorporate noisy ASR data. However, further
improvements are still needed for fine-grained knowledge support-
ing tasks (AMRParsing) under such a noisy environment. Finally,
beyond the standalone analysis on our three NLP-based group mod-
eling tasks, combining them with well-designed adaptive interven-
tions [2], encouragements [71], content support [99], and creative
brain-storming [10] can help facilitate more equitable, engaging,
and effective collaborative learning experiences [5, 7, 59, 75].

5 CONCLUSION

Effective learning environments requires adapting to different
groups and individuals, which needs accurate discourse analysis to
describe diverse behaviors. A key obstacle of accurate discourse
analysis is ASR errors in the real-world. We conducted three
extensive comparative studies of ASR errors: (1) a domain-agnostic
analysis of transcription errors, (2) domain-specific analysis on
downstream NLP tasks (AMRParsing , OnTask and TalkMove)
and (3) a simulation-based analysis to demonstrate the impact
of empty utterances and what kinds of improvements on ASR
will help our user modeling in the small-group classroom. Our
results illustrated detailed ASR errors in this classroom setting
with respect to empty rate, WER, and a novel POS-WER, which
characterizes how each word class affects downstream NLP
tasks. Then we show thorough examinations on deploying
LLM-based models trained on clean human transcripts in noisy
ASR setting. Our models yielded degraded performance on all
three tasks, while varied on diverse transfer rates. Further, we
found promising results using ASR-augmented training data for
improving the performance of NLP models on ASR transcripts.
Finally, we investigated how our LLM-based models tolerated
to simulation-based errors. Overall, our paper demonstrates the
characteristics and challenges of group discourse modeling for
collaborative learning environments, especially in real-world noisy

classrooms, and also provide practical guidance of using imperfect
ASR on different tasks.
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