Database Workload Characterization with Query Plan
Encoders

Debjyoti Pault, Jie Caot, Feifei Li, Vivek Srikumar
School of Computing, University of Utah
{deb, jcao, lifeifei, svivek}@cs.utah.edu

ABSTRACT

Smart databases are adopting artificial intelligence (AI) tech-
nologies to achieve instance optimality, and in the future,
databases will come with prepackaged Al models within
their core components. The reason is that every database
runs on different workloads, demands specific resources, and
settings to achieve optimal performance. It prompts the ne-
cessity to understand workloads running in the system along
with their features comprehensively, which we dub as work-
load characterization.

To address this workload characterization problem, we
propose our query plan encoders that learn essential features
and their correlations from query plans. Our pretrained en-
coders captures the structural and the computational per-
formance of queries independently. We show that our pre-
trained encoders are adaptable to workloads that expedites
the transfer learning process. We performed independent
assessments of structural encoder and performance encoders
with multiple downstream tasks. For the overall evaluation
of our query plan encoders, we architect two downstream
tasks (i) query latency prediction and (ii) query classifi-
cation. These tasks show the importance of feature-based
workload characterization. We also performed extensive ex-
periments on individual encoders to verify the effectiveness
of representation learning, and domain adaptability.

PVLDB Reference Format:
Debjyoti Paul, Jie Cao, Feifei Li, Vivek Srikumar . Database
Workload Characterization with Query Plan Encoders . PVLDB,

(): xx0Cyyyy, -
DOI: https://doi.org/TBD

1. INTRODUCTION

Database Management Systems (DBMS) are general-purpose

systems that aim to provide solutions to as many applica-
tions as possible. Database designers expose many configu-
ration settings to facilitate end-users in managing complex
workloads efficiently. However, there is no single configu-
ration that works for all workloads, and finding the opti-
mal configuration setting is very dependent on the workload
characteristics.

t These authors contributed equally.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. , No.

ISSN 2150-8097.

DOT: https://doi.org/TBD

In the usual process, DBAs first need to learn about the
database queries that frequently run on their database sys-
tem and then dig deeper to characterize these queries. It
requires in-depth knowledge and a robust understanding of
the queries and their execution features. It is a challenging
and laborious task for DBAs to comprehend the execution
features of queries and their relations with configuration
knobs. Furthermore, the large number of possible DBMS
configurations settings make it a daunting task for DBAs.
Advanced DBAs apply simple data mining techniques and
hand-tweaked feature engineering to understand the nature
of the workload, but this requires domain expertise, which
is rare.

Nowadays, many small to medium businesses (SMBs) man-
age their databases with cloud services. Cloud database
service providers can now obtain and analyze large amounts
of anonymized workload data. Managing database resources
efficiently is indispensable for providing quality services. Each
database instance runs a different workload. Applying data
science can help identify workloads with similar character-
istics, and then it can be used in downstream tasks, e.g.,
query optimization, configuration recommendation, and in-
dex recommendation. Essentially, it raises a requirement
of database workload characterization, i.e., the ability to
describe the distinctive nature and features of queries in a
workload.

Previous work [32] shows with TPC-H benchmarks how
each database query behaves differently with changes in
database configuration settings. For example, query Q18
and query Q7 in TPC-H benchmark responds to knob changes
shared_buffers vs. effective_cache_size very differently
w.r.t. query latency. Each query possesses distinct features,
and the demands for computational resources are also dif-
ferent. It suggests that each query needs to be treated
uniquely and based on their characteristic. Recent research
works [10,11,17] leverages query plans as the feature descrip-
tion of queries and use it for tasks like index recommenda-
tion [10,11] and configuration knob tuning [17].

In the natural language domain, a word is a structural
and functional unit of a meaningful sentence. Similarly, in
the database domain, a query is the structural unit, and a
database query plan is the functional unit of a workload.
With the advancement in the distributed representation of
words, the downstream tasks like sentence similarity, ques-
tion answering, and textual entailment have improved dra-
matically [9,21,39]. Likewise, we foresee that downstream
tasks like workload similarity, index recommendation, and
database configuration recommendation can benefit from

the study of workload characterization.
We propose a scalable data-driven artificial intelligence

(AI) approach for workload characterization with a distributed

representation of query plans. One of the benefits of Al deep
learning models is automatic feature engineering and auto-
correlation among features. It is a non-trivial arduous task
and possesses many challenges in achieving the aim of work-
load characterization. Some of the challenges that make
it very different from other entity representation learning
are Query Independence, Diverse Query Structure, Model-
ing Computational Complerity, and Data Dependence. We
present a constructive detail on each of the aforementioned
challenges in §2.3.

Our Approach. In our work, we first propose a query
plan distributed representation model that captures the in-
herent characteristics such as structure, computational de-
mand, and feature manifests embedded within a query plan
structure. Hence, we created two parts for query plan repre-
sentation, (i) Structure Representation, (ii) Computational
Performance Representation. The two representations, ei-
ther separately or collectively, can be used in downstream
tasks to understand a query comprehensively. As an ex-
ample, we demonstrate an approach to perform query la-
tency prediction with the help of query representations. It
can help in offline profiling of workloads and aid in tuning
database settings. We believe that instance optimality of
a database can only be achieved with the in-depth under-
standing of queries running in a system, and suggests the
introduction of workload characterization component for it.

In our choice of design for distributed representation, we
can either use a fized-embedding or a pretrained encoder ap-
proach. Fixed embedding is useful where the set of elements
is complete, and after model training, we get a fixed repre-
sentation for all the elements in the set. This approach
is instrumental in domains like graph embedding. On the
other hand, a pretrained encoder is a learned model that
can output embedding on receiving the input by featurizing
the input attributes and learned weights from previous ob-
servations. We follow the pretrained encoder approach for
adaptability and transfer of knowledge.

Furthermore, we follow a bidirectional encoder strategy
with both feature-based and finetuning-based approach in-
spired by the language models [9]. In this approach, the
embedding obtained from the pretrained encoder is trained
to learn features, and then the feature embedding output
can be fed to multiple task-specific models. The approach
aims to alleviate the requirement of task-specific representa-
tion and facilitate the reuse of already learned features from
the encoder to multiple domain-specific tasks. A pretrained
plan representation model also simplifies the transfer learn-
ing process when trained on a large dataset and fine-tuned
for a specific data and problem set.

We summarize the contribution of this paper.

e We propose plan encoders for distributed representa-
tion of query plans. The general feature-based en-
coders capture inherent characteristics of query plans.

e We capture two aspects of the query plans indepen-
dently with two classes of encoders. The structure ,
and the computation of query plans.

e The structure encoder is inspired by the natural lan-
guage model, representing a tree structure of hetero-
geneous operators in a latent multidimensional space.
Consequently, we evaluate our structure encoder model

with similar query classification and regression tasks
on multiple datasets.

e Our computational encoder is a collection of encoder
instances. Each encoder corresponds to a database
operator such as scan, join, sort, aggregate, etc., op-
timizing for multiple metrics to capture the computa-
tional features. The encoder uses statistical informa-
tion and data distribution of the underlying relational
data along with the explicitly specified plan features
and database configurations.

e We suggest a pretraining approach for our encoders
with a large dataset of diverse query plans and database
benchmarks. We then introduce a finetuning-based ap-
proach that can quickly adapt to new data distribution
with limited data resources. It is essential for incre-
ment learning and fast domain adaptation with new
workloads.

e To show the overall effectiveness of our encoders, we
performed query latency prediction and query classi-
fication tasks. In query latency prediction, given a
query plan and a database configuration setting, the
downstream model predicts the query latency using
our plan encoders. In the query classification task, we
use our plan encoders to classify closely related queries.

The rest of the paper is organized as follows. §2 pro-
vides background and challenges we face while performing
query plan representation, respectively. In §3, we present
our structure encoder and performance encoder, followed
by downstream tasks using plan encoders in §4. We present
experiments and results of our downstream tasks with plan
encoders in §5, and analysis of individual encoders in §6.
We present a brief section on related works in §7, followed
by conclusion in §8.

2. PRELIMINARIES

Recently we are noticing a trend of utilizing the power
of Artificial Intelligence (Al) in buffer resource tuning, in-
dexing, and query optimizer [15,19,31]. Soon, we expect
database systems packaged with pretrained AI models and
dedicated cloud servers with embedded Al accelerators to
facilitate the processing. Our proposed workload character-
ization with a distributed representation of query plans can
empower database core components to operate efficiently
with in-depth insights on workloads.

2.1 Workload, Query and Query Plan.

We define a database workload as W = {(q1,61), (g2, 62),
...y (qn,0n)}, where g; is the database query, and 6; is a
normalized weight of importance of ¢; in workload W such
that >.° 0; = 1. The weight 6; can be as simple as the
frequency of appearance of ¢; in W or can be arbitrarily de-
cided by the DBA. Generally, database users mostly run
a set of predefined template queries with seldom ad-hoc
queries on databases. A data-driven smart database should
collect query frequencies and resource usages (e.g., memory,
latency, cost, blocks read/write, etc.) to determine popu-
lar (transactional/analytics intensive) workloads for choos-
ing optimal database configuration.

For each query g¢;, one can obtain the corresponding query
plan p; from the database system. Also, to note that a
query with a similar template can generate a different query
execution plan or query-plan based on the meta-information
of a table in a database. Let us say, g; generates two query

FILTER o Operator

“Startup Cost': 93138.48, "Actual Rows": 100,
“Shared Read Blocks": 36441, 'Shared Hit

Plan Properties or Features

Blocks": 150843, "Total Cost': 93138.48

SORT
"Sort Method": " heapsort', "Sort Space Used":
70, "Sort Space Type': "Memory’,
"Shared Hit Blocks": 150843,

Actual Loops , Actual Rows , Local Dirtied Blocks ,
Local Hit Blocks , Local Read Blocks , Local Written
Blocks , Plan Rows , Plan Width , Shared Dirtied
Blocks , Shared Hit Blocks , Shared Read Blocks ,
Shared Written Blocks , Temp Read Blocks , Temp
Written Blocks , Parent Relationship , Plan Buffers

Relation Name, Scan Direction, Index Name, Index
Condition, Scan Condition, Filter, Rows Removed,
Heap Blocks, Parallel, Recheck Condition

Join Type, Inner Unique, Merge Condition, Hash Con-
dition, Rows Removed by Join Filter, Parent Relation-
ship, Hash Algorithm, Hash Algo, Hash Buckets, Hash
Batches, Peak Memory

Sort Type, Sort Method, Sort Space, Sort Key, Sort
Space Type, Sort Space Used, Peak Memory

AGGREGATE
“Strategy'"Sorted,"Startup Cost': 85038.76,
"Actual Rows'": 35593, "Shared Hit Blocks":
L 141624, "Shared Read Blocks": 116467,
A4
HASH JOIN
“Hash Cond':(suppiers_nationkey =
nation.n_nationkey)", "Actual Rows': 10000,
"“Shared Read Blocks": 222,
NESTED LOOP SEQ SCAN
Hash Cond':"(suppliers_nationkey = “Join Type":“Inner", "Startup Cost: 1714691, S
palonn_naorkey)'. sty Fows': 10000, "Hash Cond: *(customer.c_nationkey = can
"Shared Read Blocks": nation.n_nationkey)®, "Shared Hit Blocks":
\
v v
SH JOIN INDEX SCAN
don Ty ivar, Sanup Cost: 174051, “Actual Rows' 150000, “Plan Widih's 148,
"Hast I": "(customer.c_nationkey "“Scan Direction": "Forward", “Relation Name":
na\won .n_nationkey)", "Shared Hit B\ocks “customer", "Total Time": 281.768,
v Join
BITMAP INDEX SCAN HASH
“Actual Rows': 56506, "Index Cond": “Hash Buckets": 1024, "Hash Batches": 1,'Peak
((orders.o_orderdate >= $1) AND (wdevso orderdate | Memory Usage": 10, Startup Time: 0.62
< (52 + ' mons-intarval monih) p Y
NESTED LOOP
"Actual Startup Time": 401.214,"Actual Total Time":
2782.515, "Actual Rnw; 94907,
BESIED Lo BITMAP HEAP SCAN
"Startup Cost": 17145.34, "Total Cost': 84542.34, Ort
e o e Heap Blocks’s 23230, “Relaion Narme”
116466, “Join Type": "nner, "orders", "Shared Hit Blocks": 1811, "Shared Block ...
I
INDEX SCAN SEQ Yean
“Index Name":"_oi,"Felaon Neme: “Actual Fows?: 25, "Acual Sartop Trme" A
et ot e Roion e A Fove 25 AT S T I ggregate

inaton, “Actus Loops 56505

Strategy, Hash Algo, Hash Buckets, Hash Batches,
Parallel Aware, Partial Mode, Peak Memory

Figure 1: A query execution plan from
TPC-H [33)].

plan pi and query plan p; on different instances. It is safe
to assume and treat both the queries differently from the
functional point of view in our approach. Hence, there can
be a one-to-many mapping from queries to query plans.
Alternatively, we can now define workload as

W= {(phol)v (p2792)7 SRR (pm70m)}>

where p; is the database query-plan, and 6; is a normal-
ized weight of importance of p; in workload W such that
>, 0i = 1. For readability, we will refer a query-plan as a
plan in the paper from now.

A plan is a tree structure with heterogeneous functional
operator nodes like Seq Scan, Indexr Scan, Bitmap Heap
Scan, Nested Loop, Hash Join, Aggregate, Sort, Filter etc.
Each operator node contains a set of execution properties.
We present an example of a plan in Figure 1 of query Q5
from the TPC-H benchmark with operator types. All op-
erators have a set of common properties, and in addition,
a few contain specific properties based on their functions.
These operator properties carry valuable information about
their execution. Based on the functions of each operator, we
grouped all operators into five exclusive groups, i.e., Scan,
Join, Aggregate, Join and Others. In Table 1, we lay out
the properties common to all groups as ’All’ and the prop-
erties exclusive to Scan, Join, Sort, and Aggregate operators.
These operator properties are used for computational per-
formance representation of the plan. Please note that we do
not use properties like Total Cost, Actual Total Time, Actual
Startup Cost because we use them as labels in our prediction
tasks. We describe it in §3.2.

For any plan p; as input to our Structural Encoder and
Computational Encoder, the models outputs the structural
embedding S(p;) and the computational performance em-
bedding C(p;), respectively. These embeddings are used by
downstream models for different fine-tuning tasks.

2.2 Deep Neural Networks (DNNs)

DNNs are widely used computational frameworks for many
AT applications. DNNs are layers of neuron thoughtfully
structured that performs a weighted sum computation of the
input values at each neuron. A structure of DNNs or model is

Table 1: The properties from query execution plan that are common to all the operators
and a few specific to major operators like Scan, Join, Sort and Aggregate.

also an instance of a machine learning algorithm that learns
patterns from data with inferences and then by readjusting
weights to minimize error. DNNs are very efficient in re-
ducing high dimensional data into low dimensional code, or
features [14]. DNN hardly requires feature engineering and
can learn complex relations among multiple features. In our
paper, we are specifically interested in the entity represen-
tation learning capability of DNNs. Moreover, we focus our
attention on Autoencoder (an Encoder-Decoder approach)
for learning the structural representation model. A particu-
lar kind of Autoencoder called Denoising Autoencoder can
capture robust generalized features from original data [37].
We applied an advanced feature-based encoding and learn-
ing technique inspired by natural language models. Recent
applications of encoder architectures on language models are
very successful in capturing structural and statistical prop-
erties [9,39]. Query plans are structurally complex, and
properties of plan operators are implicitly correlated. Hence,
we adapted the autoencoder approach in our representation
models. For the computational performance representation,
we used a supervised learning approach to learn features
that drive operator metrics.

2.3 Challenges and Mitigation Strategies

Traditional machine learning approaches encode entities
into a fixed-length features before feeding them into any
model for prediction tasks. We provide a consolidated set
of challenges we face while performing workload characteri-
zation with plan encoders because of heterogeneous nature,
diverse shape, and varying depth of plans.

o Query Independence: Each query is unique and inde-
pendent. Even if the queries are from the same bench-
mark or workload; they are seldom similar in struc-
tural and computational complexity. Unlike other en-
tity embeddings where contextual appearances of en-
tities play pivotal importance (such as word embed-
ding), in workload contextual or temporal appearance
of queries are not related.

e Diverse Query Structure: The structure of query plans
is represented as a tree of functional operator nodes,
e.g., scan, join, sort etc. It is a non-trivial task to

represent a tree structure containing attribute features
at every node.

e Modeling Computational Complezity: Each query has
a specific demand for computational resources based
on their functional operations. Moreover, the resource
demand of each functional operator is different. An
open question arises whether to implement an operator-
level model or a single primary model for encoding.

e Data Dependence: In databases, the generation of query
plans from a query depends on many factors, such as
index availability, statistical information on data. A
complete query plan can only capture basic informa-
tion about underlying data. It raises the question of
whether it is enough or we need to incorporate more
information.

e FEncoding Multiple Properties: Database plans contain
interrelated properties and information that give hints
about query performance and their execution metrics
such as latency and throughput. It is a challenge
to unify and discover complex correlations among the
properties and features explicitly obtained from plans.

e Domain Adaptation: The encoder models trained on
a set of workloads are likely to encounter a different
unseen workload in the prediction phase. It is a chal-
lenge to quickly adapt to a new workload setting (with
less training data) using the prior pretrained weights
of the models.

We adopted specific strategies in our approach address-
ing the above challenges. We purposefully design a feature-
based query plan encoder for learning the individual char-
acteristics from different query plans. For modeling the per-
formance complexity, we incorporate meta-information (e.g.,
data distribution, selectivity, cardinality) of database tables
and attributes used in queries providing a detailed picture
of the data access pattern.

It is a not trivial attempt to incorporate all the relevant
meta-information and capture relevant features in our plan
performance representation. Still, it is reasonable to assume
that if we can incorporate all the required information to the
encoders, we might be able to learn the influencing factors
contributing to the evaluation metrics of query plans. After
all, query optimizers are universally designed logical compo-
nents that generate query plans. The encoders producing a
distributed representation of query plans can facilitate many
downstream tasks and enhance the performance of core com-
ponents. It encourages us to keep the encoder as general as
possible and capture the correlation among properties well
enough in the query plan representation. We aim to create a
pretrained encoder model that learns from large and diverse
datasets to learn plan features with a data-driven approach.
In the ideal scenario, we want pretrained encoders to quickly
adapt to new domains with less dataset, expediting domain
transfer.

3. QUERY PLAN REPRESENTATION

In this section, we present our Structure Encoder and
Computational Performance Encoder for plans. Each node
in the tree is a functional operator with multiple proper-
ties, and nodes are ordered and connected via unlabeled
edges depicting the dependence relation. For structural rep-
resentation, we mainly study the operator type of each node

and leaving the performance-related properties for compu-
tational performance representation in §3.2. When sketch-
ing our encoders, we realize that keeping separate struc-
ture, and computational performance representation enables
downstream tasks to choose and weigh each representation
independently in their model and introduces modular de-
sign. It also helps us in evaluating the structure and perfor-
mance encoders separately.

For both Structure Encoder and Computational Encoder,
we aim that our pretrained model can easily be adapted by
new applications. Hence, we study both of them on a two-
stage framework: pretraining and finetuning. In this section,
we mainly introduce the pretraining tasks and model archi-
tectures for them. Then we outline our finetuning evaluation
in §3.3.

3.1 Structure Encoder

We first try to give a clear picture of the diverse types
of operators in plans and how we define a taxonomy for
them. Same functional operators can use different strategies
to fulfill their operations. There are multiple types of Scan
operators like Sequential Scan, Index Scan, Bitmap Heap
Scan, etc. Again, the same strategy is often used in mul-
tiple functional operators, like, Hash Join and Hash Aggre-
gate use Hash strategy. We organized each type of operator
into three sub-level types as a taxonomy of operators. The
top-level Level 1 mostly suggest functional properties such
as Sort, Insert, Union, Scan, Join, etc. FlLevel 2 and Level
3 are grouped based on mutually exclusive strategy types
such as Hash, Index, Heap, etc. Table 2 shows all three
levels of operator sub-type for defining a real operator. We
define all operator with three sub-type as (Level 1)-(Level 2)-
(Level 3). For example, operator Bitmap Heap Scan and Left
Merge Join is represented as Scan-Heap-Bitmap and Join-
Merge-Left, respectively. All these operator types form the
tree structure as shown in Figure 1, we need to find a way
to encode the tree. Notice that workload analysis based
on similar query plans can help DBAs in optimal utiliza-
tion of database resources, e.g., buffers and configuration, by
utilizing historical experiences from other databases. Fur-
thermore, encoders enable the clustering of similar-featured
queries learned from a large set of queries without actually
sharing any private/sensitive query information. Inspired by
this goal, we propose a plan-pair similarity regression task
to guide structural representation learning.

3.1.1 Plan-pair Similarity Regression

For pretraining our structure plan encoder, we need a
dataset of plan pairs with their similarity scores, but ob-
taining such a dataset is challenging because this is a graph
similarity matching and scoring problem [40]. We came up
with a method to generate a bootstrapping training dataset,
using a widely used graph similarity metric for natural lan-
guage representation domain: Smatch [6]. It calculates the
degree of overlap between two graph structures, defined as
the maximum F1-score obtainable via a one-to-one matching
of each node in two graphs. Hence it is a value from 0 to 1, 0
means very different, while 1 means exactly the same. In this
task, we treat the optimal Smatch score as the similarity of
the two plans. The Smatch score between two tree-structure
plans can be computed by graph matching optimization al-
gorithm, such as Integer Linear Programming (ILP) or Hill-
climbing methods. After we get the Smatch scores s;; of each
plan-pair < p;,p; >, this can easily form a large dataset

Abb & o (

FEED FORWARD NETWORK.

ADD & NORM

MULTI-HEAD
ATTENTION

EMBEDDING INPUT

f

MATCHING 4\
[[CLS] ENCODING P; 1 [[CLS] ENCODING P,]
A . A

SELF ATTENTIVE ENCODER N | SELF ATTENTIVE ENCODER N
ot 1 T 1 1
f f t t

SELF ATTENTIVE ENCODER 2 SELF ATTENTIVE ENCODER 2
ot 1 [1
e () 1 1 *)

SELF ATTENTIVE ENCODER 1 SELF ATTENTIVE ENCODER 1
- 1 . '

EMBEDI | EMBED2 | * * * * * * | EMBEDK EMBEDI EMBED2 ° * * * ° ° EMBEDK

{ EMBEDDING LAYER J EMBEDDING LAYER

0,/ NODE 1 .Nom—:z\ e e

Serialized Plan p;

‘{Ok[NODEkJ [01\N0DE1][02{N0DE2J coeee {Ok{NODEk}

Serialized Plan p;

Figure 2: Plan Structure Encoder Model. Serialized plan p;
and p; with node positional information denoted with O.

Strategy Node Sequence

(Filter—, (Sort—, (Aggregate—, (Join-Hash-, (Loop—
Nested, (Join-Hash-, (Hash—, (Loop—Nested,
(Loop—Nested, Scan-Index-, Scan-Seq-) Scan-
Heap-Bitmap)) Scan-Index-Bitmap) Scan-Index-)
Scan-Seq-))))

DFS
Bracket

Level Operator Sub-types

Aggregate, Append, Count, Delete, Enum, Gather,
Aggregate (Group, GroupAggregate), Hash, Insert,
Intersect, Join (Nested Loop), Limit, LockRows,
Loop, ModifyTable, Network, Result, Scan, Se-
quence, Set(SetOp), Sort, Union, Unique, Update,
Window, WindowAgg, Materialize

Level 1

And, CTE (Common Table Expressions), Except,
Exists, Foreign, Hash, Heap, Index, IndexOnly,
LoopHash, Merge, Or, Query, Quick, Seq, SetOp,
Subquery, Table, WorkTable

Level 2

Level 3 Anti, Bitmap, Full, Left, Parallel, Partial, Partition,

Right, Semi, XN (parallel operators)

Table 2:

with Smatch score as the similarity supervision. We first
train our structure encoder to predict the Smatch score of
each plan pair. To note that the idea is not to learn the
Smatch but to learn contrast features from plans. Later in
our experiments on the downstream applications, we show
that the structure encoder pretrained from this task can be
easily finetuned for a new task or domain.

3.1.2 Model Architecture

We can keep the plan tree structure intact and use tree-
encoding architecture (such as, tree-LSTMs [30]) or use se-
rialize methods to treat it as a sequence encoding problem
with positional encodings. In tree-LSTMs information, flows
are only through immediate neighbors, and it needs sepa-
rate attention mechanism for contexts among the nodes of
sibling subtrees [1,26]. For query plans (with many join
and select permutations), we encourage keeping wider con-
texts from a neighbor sub-tree siblings, and that’s why find
self-attention model with positional encodings a simple and
better approach.

We use the depth root first traversal to serialize plans,
with a simple yet ingenuity hack by adding hierarchical
brackets for each non-terminal node in the tree. An open
bracket always encapsulates sub-trees at the start and a clos-
ing bracket at the end; this is less ambiguous than simple
BFS and DFS tree traversal strategies. These brackets pre-
serve positional information of the structure and are then
utilized inherently by our self-attentive encoder with posi-
tional encoding. We present a running example of our DFS-
Bracket strategy in Table 3 for the plan in Figure 1.

The taxonomy of operator types for every node

Table 3: Running examples for DFS-Bracket traversal Strategies.
We use hyphens to connect 3 subtypes. When no sub-type for
the node, we denote it as NIL type, here we use blank space for
it to save table space. For example, the first node Filter- actually
means the first subtype is Filter, the second and the third subtype
is NIL

Self-attentive Encoder Layer. We employ the multi-
head, multi-hop attention mechanism used in Transformer
networks [36] pictorially presented in Figure 2. Due to space
constraints, we refer readers to the original work for details.
We use same Q: attention query', K: key, V: value matri-
ces notation from the original paper here.

The multi-head attention is defined as,

Multihead(Q, K, V) = [head; 0...0 headh}WO (1)

QW (Kw/f)"
Vd

The W, ’s refer to projection matrices for the three inputs
and the final W? projects the concatenated heads into a
single vector, and % is scaling factor where d is the dimen-
sion of Q,K, and V. o means concatenating the encoding
attended by multiple heads.

The choices of the attention query, key, and value define
the attention mechanism. In our work, we use self-attention,
defined by setting all three matrices to [nj;1 ...n,z], where
n;; is the input encoding of the jth self-attentive layer,
which is corresponding the encoding of the kth node in the
serialized version along with positional information.

head; = softmax <

)VWY (2)

Input Embedding Layer. We represent every plan op-
erator node as a concatenation of embedding of the three
subtypes as given in Table 2. Besides these regular nodes,
we also added four special nodes CLS, SEP, BR_.OPEN, and
BR_CLOSE for a start, end, bracket open, and close in the
serialized plan sequence, respectively. For positional encod-
ing in a self-attentive layer, we keep track of bracket states
for any input sequence with a list. This list counts the num-
ber of opening brackets for all the levels till that node in
the serialized plan. It is a simpler tree position encoding
scheme inspired by the work of Shiv et al. [27]. We restrict
our discussion due to space constraints, though we present
a few examples of list states and the encoded positional in-
formation here.

a. (((» 1,1,1 —» [0,0,1,0,0,1, ,0,0,0],
b. (O(C - 1,2,1 — [0,0,1,0,1,0, ,0,0,01,
c. (CCOXC — 1,1,2,2 - [0,0,1,0,0,1, ,0,1,0].

Matching Layer The output of the self-attention encoder
is a sequence of vector for each nodes, we use the output
encoding of CLS node as the encoding of the plan p;, be-
cause it aggregates the weighted sum of all other nodes in
the self-attentive layer. We denote the plan encoding for p;
as P; € RY. After encoding the plan-pair <pi, p; >into vec-
tors <P;P;>, then we use a matching layer to compute the

!Note that attention query Q is different from query plan p;

Features Type Feature Attributes

rel_name, att_name, rel_tuples, rel_pages,

Meta Features rel_file_node, rel_access_method , n_distinct,

META FEATURES
(1 X META_SIZE)

DB SETTINGS

(1 X PLAN_SIZE) (1 X DB_SIZE)

I

[PLAN FEATURES ‘

distinct_values, selectivity, avg width, cor- [HIDDEN LAYER 1 ‘ HIDDEN LAYER 1 HIDDEN LAYER 1
relation (ReLU] | ReLU) ReLU)
bgwriter_delay, shared_buffers, bg- ¢
) writer_lru-maxpages, \yal,buffers, _ ran- HIDDEN LAYER 2 ‘ HIDDEN LAYER 2 HIDDEN LAYER 2
DB Settings dom_page_cost, bgwriter_Iru_multiplier,
checkpoint_completion_target, check- [ReLU) | RelU) (ReLU)
point_timeout, cpu-tuple_cost, v
max_stack_depth, deadlock_timeout, HIDDEN LAYER 3 ‘ HIDDEN LAYER 3 HIDDEN LAYER 3
default_statistics_target, work_mem effec- (ReLU] ReLU) ReLU)
tive_cache_size, effective_io_concurrency, ¢ ¢ ¢
join_collapse_limit, from_collapse_limit,
maintenance_work_mem [FCNN LAYER (3 EMBEDDING_SIZE X EMBEDDING_SIZE)]
Table 4: Meta Features and DB Settings used as input fea- [Rell)
tures to Computational Performance Encoder *L
(EMBEDDING LAYER]
similarity as [FCNN LAYER (EMBEDDING SIZE X LABELS SIZE)]
o(W x [PioPjo(P; — Pj)o(PiP;)] +b) OUTPUT

where ¢ denotes the sigmoid activation function, W € R*?,
b is bias, and o are the concat operators on four vectors.?

3.2 Computational Performance Encoder

In this section, we present our computational performance
encoder, describing the pretraining task to supervise the en-
coder learning, and our proposed model architectures and
the intuitions behind them.

3.2.1 Performance Attribute Prediction

The properties mentioned in Table 1 for each type of
broadly classified operator in a plan give an ample hint on
its computational demand. These properties are either de-
rived from complex logical inferences by a plan optimizer
or actual output from the query execution. In previous
works [10,11,19], we notice the use of Total Cost, Total Time,
Startup Time properties as a measure of performance. We
strongly agree with previous research works on using the
properties above-mentioned as measures of computational
performance. Moreover, in our encoder, we use these at-
tributes as labels for prediction to encode the underlying
features. We use properties explicitly mentioned in nodes
(an instance of an operator in a plan), meta-information
from databases, and database configuration settings to pre-
dict these labels. In the process of learning the labels, we
learn the implicit features as embedding with our computa-
tional performance encoder.

We first create encoders, each for (i) Scan (ii) Join (iii)
Sort (iv) Aggregate functional operators, these four oper-
ators are the most frequently used in query plans. The
nodes with operator type Hash Join, Merge Join, Nested
Loop, Left/Right/ Inner/Outer Merge Join, Nested Loop is
mapped to Join; similarly, Seq Scan, Index Scan, Heap Scan,
Bitmap Heap Scan is mapped to Scan. From the properties
of each node, we also extract the relation names and at-
tribute names from which it is accessing the data from node
properties such as Relation Name, Hash/Join/Merge/Index
Condition, Filter, Output. We map them with the meta-
information collected from the database. In Table 4, we

2Other match function exists, e.g. bilinear similarity
PZ-MPJ-T7 M € R¥?. However, we found that this con-
tanated matching similarity can largely reduce the parame-
ters size from d? to 4d and achieve better performance.

(LABELS_SIZE X 1)

Figure 3: The multi-column deep neural network(DNN) for
our computational performance encoder.

show the meta-information attributes we use as input to the
model used by the node. This information can be easily
extracted from system tables of database systems like Post-
greSQL [28].

We also use a set of database configuration setting val-
ues of the running database as input features to the model.
These configuration settings are selected based on their im-
portance for performance tuning as described in [24,35]. The
approach of training our models with diverse configuration
settings also sets us apart from other plan-metric prediction
works [19, 29].

Altogether, we have three types of input features,

e (a) Plan Features, fnode: Features obtained from a
plan operator nodes, see Table 1 for feature list.

e (b) Meta Features, fmeta: Meta-information about data
and its distribution, see Table 4.

e (c) DB Settings, fa»: Handful number of database con-
figuration settings, see Table 4.

With a triplet feature tuple as input (fnode, fmeta, fdap) OUur
performance computation encoder aims to learn latent fea-
tures while optimizing for Total Time, Total Cost, or Startup
Time. In our joint training optimization approach as de-
scribed in §3.2.3, we make use of these three metrics to cap-
ture better encoder features and avoid overfitting.

3.2.2 Model Architecture.

We now present the deep neural network (DNN) archi-
tecture of the encoder with a pictorial representation in
Figure 3. It is a three-column DNN on the top each for
Plan features, Meta features, and DB features, respectively,
with another fully connected NN layer merging the three
parts and producing the embedding layer. The last fully-
connected NN component takes the output of the embed-
ding layer to predict the metric labels, i.e., Total Cost, Total
Time, Startup Time. Also, each NN layer is followed by an
activation function layer of ReLU (Rectified Linear Unit),
Sigmoid or Tanh functions. As mentioned earlier, we create
multiple instances of this supervised regression model, each
for a functional operator.

A NN layer can efficiently represent or capture complex
relations among input features by applying an affine trans-
formation of the input. With multiple feed-forward NN lay-
ers, number of recursive affine transformations with weight
matrices and non-linear activation functions are applied to
the input features to produce an output. Then the differ-
ence between the desired output and the predicted output
is calculated based on some metric functions dubbed as loss.
A gradient descent based technique is applied to tweak the
weights on each layer used to perform the optimize affine
transformation weights minimizing the loss. It allows the
model to learn non-linear and polynomial order complex
functions, automatically identifying the relevant features.

One of the ingenuity of this model is three-column multi-
layered feature approach on Plan, Meta, and DB features,
respectively, allows the model to find correlation among the
same type of features first. Then transformed weighted fea-
tures from each part can correlate effectively. As a prelimi-
nary attempt, we train an alternate model with a standard
(single-column) DNN with all the input features together.
In §6.2, we provide a comparative study to evaluate both
the models.

3.2.3 Joint Training

A general rule of thumb for any model is that the distri-
bution of predicted data remains the same as training data.
But, in our case, the data distributions change with new
workload. When the model learns from a single or small
workload benchmark, the model overfits to the training set.
With an assumption that if enough information on the data
distribution is provided for training the model, the model
may learn the factors governing the performance metrics for
each operator (Scan, Join, Sort, Aggregate, etc.). Also, the
fact that a general query plan optimizer (which is a logical
component) uses the same statistical information we use as
input to our model encourages us. The trick is to learn a
generalized pretrained model that can adapt to an unseen
workload with small data from the new domain. Hence, the
pretrained models should utilize already learned parameters
to adapt with the new workload.

We utilize a joint training approach for training the en-
coders. We train each operator model on multiple workloads
on different data distributions and multiple database con-
figuration settings. In joint training approach, we perform
multiple metric tasks, each task optimizes for each label, i.e.
Total Cost, Total Time and Startup Time. The difference in
each of these models is the last NN-layer, which uses the
embedding layer as input. Since the top level of the model
remains unchanged, the weights are naturally tweaked to
learn features based on multiple tasks.

We evaluate our performance encoder models on two cri-
teria, (i) the model uses less data from a new domain to
adapt, and (ii) the model error on validation and test data
converges. We provide a detailed evaluation results on our
pretrained computational performance encoder in §5.

3.3 Finetuning Evaluation

Given the above pretraining for learning structure and
computational performance encoders, we hope that our learned
model can be easily used in other unseen applications. We
conduct two groups of finetuning evaluation for them:
Domain Adaptation. For both the structure encoder and
computational encoder, they are trained from a source dis-
tribution on plan-pair similarity regression and performance

attribution prediction tasks. Domain Adaptation aims at
that these models can be easily finetuned on a different tar-
get data distribution. Hence, we finetuning them on differ-
ent benchmark workloads on the same tasks, such as TPC-H
and TPC-DS | and Spatial benchmarks. For plan-pair simi-
larity regression task, we generate a collection of plan pairs
for each new benchmark, and then calculating the Smatch
scores for evaluation. For the performance attribute predic-
tion task, we collect the new dataset by running workloads
on different database configurations. More details about
those datasets is introduced in §5.1, and the results on do-
main adaptation for each encoder are shown in §6.

Transfer Learning to New Tasks Besides the ability of
domain adaptation, we also define two new tasks to evaluate
whether our pretrained plan encoder can be easily used for
other tasks rather than our pretraining task in §4.

4. DOWNSTREAM TASKS

In this section, we show two downstream tasks that use
our proposed plan structure and performance encoders. We
present a bird-eye view model architecture, common to both
the downstream tasks in Figure 4. For a given query plan in-
put, meta information of database, and database configura-
tion, the plan encoders (structure and performance encoder)
produce respective representations as output. This output is
then fed to the downstream task-specific model. Note that
for generating the computational performance representa-
tion, we group plan nodes based on the type of functional
operator and then pass it to the corresponding performance
encoder to obtain representation.

The downstream task model is a standard multilayer-
DNN taking three inputs, (a) structure embedding,(b) com-
putational performance embedding, and (c) the database
settings. The properties of database settings are real num-
bers. They can have an arbitrarily large value, which hinders
learning a better model. We overcame the problem by scal-
ing each database setting with a logarithmic function and
using them as added features along with the actual numbers.
Furthermore, we added a flexible design of reshaping the di-
mension of the structure or performance representation in
the downstream task model for obtaining better accuracy.

4.1 Query Latency Prediction

The first downstream task is a real-world task of pre-
dicting query latency for an input query plan on a given
database knob configuration settings utilizing our plan en-
coders. Formally, we define the query latency prediction
problem as follows.

PROBLEM 1 (QUERY LATENCY PREDICTION:). Given a
query plan p, meta-features fmeta of the database, and a
database configuration settings fan, the model predicts the
latency of the query.

For generating the training data for the latency model, we
created an automated workload running scripts® that runs
on cloud server instances and uploads executed plans along
with the meta-features and database settings to our data
repository. The script generates a new database configura-
tion and configures the database automatically for each run.
These new database configurations are generated based on
the Latin Hypercube Sampling method [3,20] for the prop-
erties mentioned in Table 4. This method for generating

3https://github.com/debjyoti385/workload_scripts

QUERY-PLAN ENCODER

FILTER M
“Startup Cost's 93138.48, "Actual Rows': 100, -4 ~
— 4
Snared Foad Blocks 36441, “Shared Hi = Ly > > g || - -
Blocks": 150843, “Total Cost' 93138.48, < . o — — —_— —
! 8 2 2 2 ||| g
() IS () a
S g8 o spc s s 5|8 P> —| 9 | —| 9 a 5 ~
70, "Sort Space Type": "Memory”, Z r4 Z @ = &
Sharod i Bocks. 150845, = & 5] & g z S
w =
> & <
S —> 3 & g ANl CIRELE
55565, "Snard i loce” = Z Z = S S| Z B>
147650, Shared Raad Soe- 116487 [G E E E I3 5 g ~
= = 2 -2 -2
T = z z < g AREIRRE 2
), "Aciual Rows": 10000, o (]) 7 =} > >
e ood Bk 522 = =] j=| =) = = =
! 7) > B - 8 S > 4 s e 5
NESTED LOOP) SEQ SCAN U) 1) |z|a Z |3 =
“Hash Cond": (suppliers_nationkey = “Join Type?: "Inner", *Startup Cost" 17146.91, Z |'s 4 © =
nation.n_natonkey)',"Actual Rows" 10000, "Hash Cond':"(cusiomerc_nationkey = — ~ ~ 2
“Shared Read Blocks': 222, nation.n_nationkey)", "Shared Hit Blocks': — — Z Z 2
ARE 2 2
HASH JOIN INDEX SCAN - ‘ SCAN ENCODER S E - a8 a
4o Type: e, "Sarlp Cost 714831, *Actual Rows": 150000, “Plan Width 148, = @ =] =]
Hash Cond *(cusiomer.c_ natokey *Scan Diecton’: “Forward". ‘Relation Name': Z @ = =
nation. nationkey), "Shared HI BIOGKS™ ... “customer’, "Tota Tme': 261.768 - 8 = = z
N O
BITMAP l'NDEX SCAN HASH Q { JOIN ENCODER J S = 3
“Actual Rows': 56506, " “Hash Buckots" 1024, "Hash Batches': 1,"Poak Z. % sz 3
((orders.o. omemlayst)AND (udersu orderdate Memory Usage”: 10, Startup Time: 0.62....... = m |
S et o c 5 a
e sumﬂEm§T4%chogL’m Tl i > SORT ENCODER S > |5 g
02515, Ak B 40) > é =
NESTED LOOP) =
Funcer s oo | e ey e g 7
eiss, ‘usn Type orders, “Shared Hi Bocks® 1811, "Shared Block S AGGREGATE ENCODER 2 —) _—
¥ g B
o scan seq¥can g 8 DOWNSTREAM TASK
ol e A o OTHER OPERATOR ENCODER = Y S S
Q © T
[META-INFORMATION]—' —[DATABASE SETTINGS }

Figure 4: A bird-view diagram, showing the role of plan encoders for downstream task.

database settings has been earlier used by Duan et al. and
Aken et al. [12,35].

4.2 Query Classification

A smart database could use the knowledge of workload/
query distribution to set an optimal database configuration.
An important step towards it is to learn the features of simi-
lar queries, and cluster/classify them. We conducted a query
template prediction task with our pretrained plan structure
and performance encoders. We aim to show that our plan
encoders can efficiently project query plans in latent dimen-
sions finding similar query plans. We formally define the
problem statement as follows.

PROBLEM 2 (QUERY CLASSIFICATION:). Given a query
plan p, meta-features fmeta of the database, and a database
configuration settings fap, the model predicts the predefined
class for the query plan based on feature similarities.

We conducted an experiment with join order benchmark
[16] containing 113 interesting query templates and 33 clus-
ters of similar query templates. Due to the variable cardi-
nality of the database tables and query predicates, the query
plans generated from a query optimizer can differ from one
another. It also makes the classification task challenging
to cluster the query features accordingly. We include the
performance encoder in classification tasks as queries even
with similar plan structures can differ in performance fea-
tures. We present detail of this experiment and the role of
individual encoders in § 5.3.

S. EXPERIMENTS AND RESULTS

In this section, we first describe the datasets we used in
our experiments. We then present evaluation methods with
experimental results for latency prediction and query tem-
plate classification tasks.

5.1 Datasets

Crowdsourced Plan Dataset. We collected this dataset
containing PostgreSQL queries along with its execution plans
from a crowdsourced website? [8]. We used this dataset for

“https://explain.depesz.com

pretraining our structure encoder model. After pruning the
plans with more than 200 nodes, we generate 57430,/2871 /2871
plan-pairs for training/dev/test and then calculate the Smatch
score as their similarity score.

Industry Standard Benchmarks. We have used two
industry-standard TPC-H [33] and TPC-DS [34] benchmarks
as workloads with different scale factors (SF), and execute
them with different database settings with an automated
script®. We used a part of this dataset for pretraining our
performance encoders. Table 5 shows statistics of the ex-
plored database settings from prepared datasets.

Spatial Benchmark. Spatial queries are notorious for hog-
ging resources and need a proper database configuration for
optimal performance. PostGIS, the spatial object extension
for PostgreSQL, admits the configuration tuning require-
ment based on workload type in their documentation [24].
We use the two following spatial benchmarks in our experi-
ments.

Jackpine: Jackpine [25] benchmark contains diverse spa-
tial queries on spatial join with multi-polygons, lines, points
and combination of them. We revised® the original bench-
mark with recently available shape datafiles, PostGIS exten-
sion, and also made it publicly available.

Open Street Map (OSM): The Open Street Map(OSM)
workload has spatial overlap, distance, and routing queries.
This dataset is created” with inspiration from work [4]. Due
to sparsity, it is difficult to understand the underlying data
distribution, which makes it an inviting benchmark for the
experiment. We used the OSM map of New York and Los
Angeles county.

Join Order Benchmark. It contains 113 different queries,
which can be grouped into 33 clusters due to the similar SQL
queries with different join orders. We run those queries on
different database configurations and then collect the 16229
different plans. We split that into 13505, 1362, 1362 as
training, dev, and test, respectively.

*https://github.com/debjyoti385/workload_scripts
Shttps://github.com/debjyoti385/jackpine
"https://github.com/debjyoti385/0osm_benchmark

Database Setting Unit Median 95th Percentile 5th percentile

bgwriter_delay ms 4,860.00 9,421.05 456.00
bgwriter_lru_maxpages integer 515.00 958.05 55.00
checkpoint_timeout ms 300.00 540.00 60.00
deadlock_timeout ms 300,000.00 540,000.00 26,000.00
default_statistics_target integer 4,827.50 9,563.00 454.85
effective_cache_size bytes 1,048,576.00 1,966,080.00 131,072.00
effective_io_concurrency integer 52.00 96.00 6.00
maintenance_work_mem bytes 7,340,032.00 15,728,640.00 876,953.60
max_stack_depth integer 3,072.00 5,120.00 417.95
random_page_cost number 5,028.60 9,507.39 560.40
shared_buffers bytes 2,097,152.00 3,932,160.00 131,072.00
wal_buffers bytes 130,624.00 131,072.00 12,416.00
work_mem bytes 15,728,640.00 31,457,280.00 1,048,576.00

Table 5: Statistics on configuration settings generated for

training data.
100000

m MEDIAN LATENCY
& 10000
<
o
wv
g - ii iii |
100
;‘: "7 S
o O

TIME IN
MILLISECONDS

N MDY Lox

3388 g g
§ 3
o

g o o o 5’ s § 5
Figure 5: Statistics on latency of spatial queries (> 500 ms)
from Jackpine [25] and OSM benchmark, where the blue
bar represents median, the orange line represents the query
latency variability with 5th and 95th percentile of query la-
tency for different database configuration.

o)
3
o

B MEAN ABSOLUTE ERROR (in ms)

@ 100000
5
S 10000
E
23 1000
:l w
o
20 100
zz2
u 10
= m N m 5 b1 N O ~ &N M ¥+ © H ~ S v
= 3589883333833 é”/&” V,(,,§§

Figure 6: The black bar represents mean absolute error
(MAE) (in ms) for spatial Jackpine and OSM queries, the
red line represents the query latency variability i.e. the mea-
sure of time difference between 95th percentile and 5th per-
centile (same as the orange line from Figure 5), a smaller
black bar on a larger red-line bar means better results.

5.2 Results on Query Latency Prediction

We first evaluate our query latency prediction model with

multiple experiments to project the overall effectiveness of
using our plan encoders. We used pretrained structure and
performance plan encoders trained on the Crowdsourced
dataset and multiple TPC-H and TPC-DS workloads, re-
spectively. A detailed analysis of our pretrained encoders is
given in §6.1 and 6.2.
Ablation Studies. (a) Spatial Benchmark: We first present
an ablation study on individual queries. The aim of this
study is to measure the error relative to the variability of
query latency. For initial training of the latency prediction
model, we used plans from spatial benchmark [5,22,25] exe-
cuted on 120 different database configurations. The trained
model then predicts query latency for spatial queries on dif-
ferent database configurations. To prepare our test datasets,
we ran each benchmark 50 times with very different database
configuration settings.

Figure 5 shows the query latency statistics of query tem-
plates with median query latency greater than 500 millisec-
onds from spatial benchmark; Jackpine (with prefix Q), and
OSM benchmark (with prefix OSM). The blue bars in the
chart show the median of the query latency for all the query
execution with different database settings. The orange line
shows the query latency variability due to change of database

settings. The bottom point of the orange line represents the
5th percentile, and the highest point marks the 95th per-
centile of query latencies. We present a complimentary Fig-
ure 6 along with Figure 5 that pictorially shows the mean
absolute error for all the query templates from the spatial
benchmark. The red line is the measure of the time differ-
ence between 95th percentile and 5th percentile of a query
latency in milliseconds, depicting the extent of the query la-
tency variability for the particular query. To note, vertical
axes on both figures i.e. Figure 5 and 6 are presented on a
logarithmic scale with milliseconds as unit. It shows that at
least 68% of the queries have MAE less than 10% of vari-
ability, and 90% of the queries have MAE less than 30% of
variability.

Query latency prediction on the spatial benchmark is chal-
lenging because of the sparse geospatial data distribution
from two areas contributing towards large variability. Fur-
thermore, the performance of spatial queries is easily af-
fected by database configurations. Significantly less mean
absolute error from the latency prediction model shows that
pretrained encoders helped the model.

(b) TPC-DS SF-100 Benchmark: In this experiment, we
compare our latency model with state-of-the-art latency pre-
diction models for each query template from the TPC-DS
benchmark for a scale factor of 100 (i.e., 100 GB). A recent
study by Marcus et al. [19] shows TPC-DS query ablation
study with TAM [38], SVM [2], RBF [18] and QPP Net [19].
It is to note that we used the same TPC-DS plan dataset
used by the study [19], and we split our dataset in 80:20
ratio for use as training and test data. In Figure 7, we show
an ablation study of mean absolute errors of the predicted
latencies for all the TPC-DS query templates for different
models. We find that 25 (36%) query templates showing at
least 10% better MAEs than the best baselines, 33 (48%)
query templates within £10% MAEs of best baseline, and
only 11 (16%) query templates with MAEs greater than 10%
of the baseline values. It is also worth mentioning that 22
(31%) and 12 (17%) of those queries templates show MAEs
reduction of at least 25%, 50% over the best baseline.

We performed another analysis with the relative error fac-
tor R of the predicted latency from the ground truth for all
the models, calculated as follows.

R(q) = max (pre.di'ctecl(q)7 orig.inal(q))
original(q) ’ predicted(q)

We present the percentage of the queries with less than 1.5R,
between 1.5R and 2R, and greater than 2R in Table 6 for
TPC-DS dataset. Our result shows that our Plan Encoder
has an edge over the QPP Net and other baselines. More
than 91% of the queries are within 1.5R factor with Plan
Encoder which is 2%, 6%, 23%, 40% better than QPP Net,
RBF,SVM, and TAM respectively. The number of queries
with more than 2R factor also reduced to 2%. Furthermore,
we find that 74% of the queries are within 1.25R factor of
the original latency. With a high percentage of the predic-
tion within 1.5R and 1.25R factor, it can be said that Plan
Encoder performed quite well.

As our encoders are first pretrained with general datasets,
we expect them to perform well in general, which it did. But
there is a small percentage of queries (from a few query tem-
plates) where the predictions are off by a considerable fac-
tor contributing to a higher mean value for errors on those
query templates, shown in the ablation study with Figure
7. We investigated it and noticed that for some query tem-

100000
BTAM mSVM RBF QPPNet Plan Encoder

10000

1

8

5
8

TIME IN SECONDS (LOG SCALE)

8

100000
uTAM mSVM RBF QPPNet Plan Encoder

10000

1000

e B
8
8

5

TIME IN SECONDS (LOG SCALE)

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 71 72 73 75 76 78 79 81 83

| “ “ “ “ “ “ “ “ “ “ “ “ “ " “
3 6 7 8 9 13 15 17 18 19 22 24 25 26 27 28 29 30 31 33 38 39 4 42 43 44 45 46 48 49 50 51 52 53 54

85 87 88 89 90 91 93 9% 97

84

Figure 7: Ablation study of mean absolute error (MAE) (y-axis in logarithmic scale) for the all the TPC-DS query templates

(x-axis) with scale factor 100.

Model R<15 15<R<20 R>20
TAM 51% 22% 27%
SVM 68% 15% 17%
RBF 85% 6% 9%
QPPNet 89% 7% 4%
Plan Encoder 91% 7% 2%

Table 6: Queries from TPC-DS SF-100 test set binned
based on R factor for all the models.

plates database metadata (e.g. set of indexed/non-indexed
columns) and configuration settings (e.g. shared buffers,

working memory) largely contributes to latency output. Since,

plan encoder takes database configuration as input as well
(unlike baselines), we tried our best to match the config-
uration for those with baselines runs for TPC-DS dataset.
Overall, it is still perceptible that our pretrained plan en-
coder approach works well in general on two spatial bench-
marks (Jackpine, OSM) and TPC-DS.

Discussion on Embedding Sizes; Structure Encoder vs. Per-
formance Encoder: We performed another experiment find-
ing the optimal embedding size for structure encoder w.r.t.
the performance encoder. First, we found that using only
structure encoder vs. only performance encoder yields 5
times the latency error of the latter. As a follow-up ex-
periment, we kept performance encoder embedding fixed to
300 and varied structure encoder embedding sizes from 8 to
320. We used five TPC-DS SF-10 test datasets and found
that the average MAEs dropped till embedding size 160 and
then increased; we got the best MAEs with embedding sizes
for structure vs. performance encoders as 160:300. It also
confirms that features from the performance encoder domi-
nate the structure encoders features, which is relatively low
importance but still significantly impacts the latency pre-
diction task.

5.3 Results on Query Classification

We conducted the query classification experiment with
join-order benchmark, we fuse our pretrained structure and
performance encoder to classify a plan with a template-id.
The join order benchmark has 113 query templates and 33
clusters, and it is not trivial to classify queries from this
dataset as join orders can change arbitrarily in plans. Our
classifier aims to predict both the template id and clus-
ter id. Our query classification model is similar to the
latency prediction model but with a batch normalization
layer and multi-classification cross-entropy loss. To under-

Models Development Test
template cluster template cluster
Structure only 0.2452 0.4670 0.1946 0.3847
Performance only 0.1645 0.2973 0.0977 0.1769
Both encoders 0.2783 0.5573 0.2518 0.4647

Both encoders 10% data 0.2000
Both encoders 30% data 0.2555

0.4927 0.151 0.334
0.5228 0.1843 0.3855

Table 7: Fl-scores of models for template and cluster query
classification task on development and test set.

stand how structure and performance encoder performs in
the task, we performed an ablation study using structure-
only, performance-only, and both in our experiments. The
results in Table 7 show structure encoder plays main role in
this task. Without it, the performance-only performs badly.
Adding the performance encoder boosts fl-scores by 0.058
(29%) on template and 0.08 (21%) on cluster classifications.
We also found, when the models are finetuned on only 10%
and 30% of data, i.e., rows with Both 10% data and Both
30% data, the models still performed reasonably well, which
indicates that our pretrained encoder can boost learning for
domain adaptation.

6. ANALYSIS
6.1 Structure Encoder

As described in §3.1, our structure encoder is pretrained
on plan-pair similarity regression task with the self-attention
encoder. We use a large amount of dataset from the Crowd-
sourced Plan dataset for pretraining. In this paper, we
first prune those extremely large plans with more than 200
nodes. Then randomly select 63172 pairs of plans to form
the dataset for our plan-pair regression task and calculating
all the Smatch scores of those pairs.

Baseline Models For our plan-pair similarity regression
(PPSR) task, we compare our Plan Encoder (Encoder-PPSR)
with other self-supervised encoders such as Sparse Autoen-
coders (Sparse-AE), LSTM encoders (LSTM-PPSR) as base-
lines. All these baselines learn to represent input plans into
a latent multidimensional space.

Results on Finetuning After completing the pretrain-
ing on Crowdsourced dataset for three models: Sparse AE,
LSTM-PPSR, Encoder-PPSR. We investigate the domain adap-
tation capability of these models with finetuning. We ran-
domly selected 11126, 55498, 60000 plan-pairs with plans

= FNN-Scratch
LSTM-Scratch

E Encoder-Scratch
0.400

= Sparse-AE-Fixed
= LSTM-PPSR-Fixed
& Encoder-PPSR-Fixed

Sparse-AE-Fine
= LSTM-PPSR-Fine
& Encoder-PPSR-Fine

0.309

o
=
o
o

0.300

(NI o-309

0.177

0.200

(I 0.209

0.118
0.112

0.100

SMATCH MAE LOSS

0.000

TPC-H TPC-DS

SPATIAL
Figure 8: Main Results of finetuning structure encoder on
TPC-H, TPC-DS, and SPATIAL

from TPC-H, TPC-DS, and SPATIAL datasets; then creat-
ing the training, dev, test splits with a ratioas20:1:1. We
opted for three different strategies to test domain adapta-
tion finetuning, (a) Scratch- Without pretraining, (b) Fized-
Keeping pretrained encoder in eval mode (fixed embedding)
and train only the prediction layers, (c¢) Fine- Train both
encoder and prediction layers together in finetuning proce-
dure. Figure 8 show the Smatch score’s mean absolute error
(MAE), the absolute difference between predicted and the
actual Smatch score. The trend among Scratch, Fized, and
Fine strategies on all three domains shows similar MAE be-
havior. Note that both LSTM and self-attention scratch
models performed at par on the spatial dataset, using pre-
training did not improve the result by a lot in this case.
Overall, in all the three domains TPC-H, TPC-DS, and Spa-
tial; Encoder-PPSR-Fine did well, which signifies that our
self-attentive encoder can adapt better to a new domain.
In Figure 9, we compare pretraining and no-pretraining
(scratch) method with different amount of training data.
For all 3 benchmarks, especially TPC-H and TPC-DS, our
pretrained method can achieve small MAE of Smatch score
on less amount of data. On spatial data, our pretrained
method only slightly better than no-pretraining one.

6.2 Computational Performance Encoder

We now perform local probe on computational perfor-
mance encoder with a set of experiments evaluating the pre-
trained encoders for Scan, Join, Sort, and Aggregate opera-
tor. For pretraining, we used TPC-H and TPC-DS, both
with scale factors 1,2,3 and 5 were executed on at least
20 different configuration settings randomly generated via
Latin Hypercube Sampling method [3,20].

Pretraining: We first illustrate the training procedure and
a few learnings from it. We split the dataset into 8:1:1 ra-
tio for train, validation, and test for pretraining of all the
four operators. Figure 10 shows the Mean Absolute Error
(MAE) on latency (Actual Total Time) label for train, vali-
dation, and test data for scan, join, and sort operator. In all
the cases along with aggregate (not shown in Figure 10), the
train, validation, and test MAE converges below 1 second
and stays around tens of milliseconds. The MAE on test
data is calculated based on the epoch with the best valida-
tion model seen while training. We stop the training when
the MAE on validation does not improve more than 5 mil-
liseconds in the last 100 epochs. With a 12 GB GPU on
a Ubuntu 18.04 operating system, each model takes around
6-8 hours to train.

Key insight on training the models is that the best MAE
varies based on operators. The best MAE for the Scan model
on test data is 12 milliseconds, where the validation MAE

11

o
S

== PRETRAINING-TPCH e SCRATCH-TPCH

o
w
vl

PRETRAINING-TPCDS SCRATCH-TPCDS

e PRETRAINING- SPATIAL e SCR ATCH-SPATIAL

MAE (SMATCH SCORE)
o o
Y o
w N w w

o
o

0.05
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FRACTION OF TRAINING DATA

Figure 9: Plan-pair Regression: MAEs of Smatch score on
fractions of training data

—Validation

Train

Train ~—Validation

MAE IN MILLISECONDS

EPOCH:

EPOCHS

(a) Structure encoder training. (b) Scan operator pretraining.

o 6000 Train —Validation

5000 Train — Validation
4000
3000

1510
2000

1010
510
0
L35 152126 29 32 37 43 50 77 91 104121127 152 163 186 257 754 EEEEEE e Y

MAE IN MILLISECOND!
MAE IN MILLISECONDS

1000

7 a1 50
EPOCHS EPOCHS

(c) Join operator pretraining. (d) Sort operator pretraining.
Figure 10: Showing convergence of Mean absolute errors(MAE)
(in seconds) for the validation, test and train datasets, while pre-
training all the computational performance encoders.

is 7 milliseconds. In the Join and Sort models, the test
MAESs reach a low of 3.42 milliseconds and 44 milliseconds,
respectively. It is to note that we performed pretraining on
all the three labels Actual Total Time, Total Cost and Startup
Time but for brevity we reported only Actual Total Time in
our figures.

Finetuning with pretrained models. The goal of having
a pretrained model is to expedite the domain adaptability
with less data. In many cases, obtaining adequate training
data is challenging and time-consuming. In this set of ex-
periments, we perform finetuning tasks on a new dataset of
TPC-DS with scale factors 8 (SF-8). We also performed the
same experiment on the spatial dataset, showing a similar
result. Due to space constraints, we could not add the result
of the spatial dataset.

To show the effectiveness of pretraining models over scratch
or non-pretrained model, we orchestrated a comparative ex-
periment where the performance of models trained on frac-
tions of training data. We limit the full training dataset to
randomly chosen 2000 plans and test dataset to 500 plans
for both TPC-DS and Spatial datasets. We run each model
for 100 epochs which take around 10 minutes to train. In
all the line charts from Figure 11, we notice that as the
amount of training data increases, the MAE decreases on
all the models, but the validation MAEs of scratch models
is only comparable with the pretrained models when trained
with 0.5 to 0.7 fractions of training data. The critical obser-
vation is that pretrained test seldom improves beyond 0.3
fractions of training data for our workloads.

To make the clear distinction between pretrained and scratch
models, we show the MAE on the test dataset for each oper-
ator and dataset with 0.3 fractions of training data in Fig-

160 —Pretrained Validation
I3 ——Pretrained Test
\ Scratch Validation

10000 —Pretrained Validation
——Pretrained Test
Scratch Validation

Scratch Test a

8000

Scratch Test

6000

4000

MAE (MILLISECONDS)

2000
SR i
o —
01 02 03 04 05 06 07 08 09 1

01 02 03 04 05 06 07 08 09 1
FRACTION OF TRAINING DATA FRACTION OF TRAINING DATA

(a) MAEs on Scan operator (b) MAEs on Join operator
model for fractions of training model for fractions of training
data on TPC-DS SF-8. data on TPC-DS SF-8.

P ——Pretrained Validation
1500

4100 ——Pretrained Validation
——Pretrained Test
Scratch Validation

Scratch Test

—Pretrained Test
3100 Scratch Validation

1000 Scratch Test

2100

MAE (MILLISECONDS)

&
8

1100

MAE (MILLISECONDS)

0

1]
8

3 04 05 06 O
FRACTION OF TRAINING DATA

01 02 03 o4 05 7 08 09 1

06 07 08 09 1
FRACTION OF TRAINING DATA

(c) MAEs on Sort operator (d) MAEs on Aggregate opera-
model for fractions of training tor model for fractions of train-
data on TPC-DS SF-8. ing data on TPC-DS SF-8.

Figure 11: The effect of dataset size for finetuning with pre-
trained vs scratch(non-pretrained) models, showing > 0.3 frac-
tion of dataset is enough for pretrained models to adapt a new
environment.

®PRETRAINED = SCRATCH

= PRETRAINED ~ ® SCRATCH

5967.5
4389.5

10000
10000

"
2
2

[l 25055
9015

7535
17.5

0
<
3 1000

1000

277.5

S
8

8
[l 100.9

MAE IN MILLISECONDS
5

MAE IN MILLIECONDS

I so

15

(a) TPC-DS SF-8 benchmark. (b) Spatial benchmark.
Figure 12: Comparison of MAEs for pretrained vs scratch
models with 0.3 fraction of finetuning data.

JOIN

SORT

AGGREGATE

SCAN

JOIN

SORT

AGGREGATE

ure 12 for TPC-DS SF-8 and Spatial workloads. We re-
port the test MAE for the best validation model obtained
in 100 epochs. In all the cases, the pretrained model beats
the scratch model by a considerable margin. Conclusively,
it confirms that our pretrained encoders are beneficial and
adapts to a new workload quickly.

Multi-column vs Standard DNN This experiment per-
forms a comparative evaluation between our three-column
DNN and a standard (single-column) DNN for the perfor-
mance encoder. Similar to the previous finetuning experi-
ment, we pretrained both models with the same workloads.
After that, we finetuned each model with 0.3 fractions of
training data from TPC-DS SF-8 and Spatial workloads in-
dependently to obtain multiple evaluation models. Figure
13a and 13b shows the Mean Absolute Error(MAE) obtained
from the three-column DNN and the standard DNN models
for an unseen TPC-DS SF-8 and Spatial benchmark dataset,
respectively. With the TPC-DS workload, Figure 13a shows
MAE for the three-column DNN model is better than stan-
dard DNN for all the operators except the scan operator.
Whereas the MAE for three-column DNN is significantly
less than standard DNN for the spatial workload. It suggests
that keeping the performance features (frode, fmeta, fdb) in-
dependent for the first few layers helps the model. Different
features might get intertwined in the early stage in the stan-
dard single-column model, impeding its learnability.

In summary, our experiments present plan encoders’ ef-
fectiveness in learning query plans characteristics through
downstream tasks and domain adaptation probes. The re-
sults suggest the requirement of pretrained models to char-
acterize unseen queries. Other database core systems cer-
tainly can leverage the plan encoders to increase their effec-
tiveness and achieve instance optimality.

12

=3-COLUMN DNN

= STANDARD DNN

10000

2
3
2
&

Y
o4 8
= S &
S

2095.5
|

1000 T <
~ 8

2
38

MAE IN MILLISECONDS
MAE IN MILLISECONDS

5

SCAN

JOIN SORT AGGREGATE JOIN

(a) TPC-DS SF-8 benchmark. (b) Spatial benchmark.
Figure 13: Comparison of MAEs for multi-column vs stan-
dard DNN models with 0.3 fraction of finetuning data.

7. RELATED WORKS

Workload characterization. There exists a few research
work that uses data-driven analysis on query plans and its
features to comprehend workload characteristic [2,10,13,18,
19,29]. Early research works [13, 18, 41], focuses on fea-
ture engineering with data mining techniques like k-NN [7]
on high-dimensional features. The initial works show the
importance of feature engineering, which encourages follow
up research works using neural networks for workload re-
lated prediction tasks (metrics, resource demands, indexing,
etc.) [10,11,17,19].

All these methods learn models from input features of
query plans for a specific task. In our paper, we show an
approach to learn pretrained query plan encoders that can
be used for many downstream tasks. Currently, database
researchers are proposing prepackaged Al learned models
for core components of databases [15,29,35]. Our work on
query plan encoders bridges the gap between query input
and prediction tasks.

Database tuning is an interesting problem to achieve in-
stance optimality and closely relates to query performance
prediction tasks. An earlier work, Ituned [32] uses a feature-
based approach for tuning databases. Recently published
work, QTune [17] uses query plans and reinforcement learn-
ing for tuning databases. In both approaches, query plans
are essential. Our attempt to create a pretrained encoder
for query plans is relevant to database tuning and other sim-
ilar tasks. We show its relevancy with a latency prediction
over a different configuration and different data. An earlier
work by Popescu et al. [23] shows it is feasible to accomplish
performance prediction tasks on new data distribution for
the same query. One of the significant contributions of our
pretrained encoders is the adaptability of the models with
new data and queries.

8. CONCLUSION

In this work, we study a method of featurizing database
workloads with Al based encoders that helps in understand-
ing database queries under structural and performance prop-
erties. We followed a pretrained encoder based approach for
our models that learns weights from diverse training dataset
and then use the learned model in downstream tasks like
query latency prediction. We performed multiple probes on
structural encoder and performance plan encoders, to prove
their learning capability and efficacy. We also present an in-
depth ablation study on query latency prediction for multi-
ple benchmark workload proving the usefulness of workload
characterization with plan encoders. Our approach of study-
ing database workloads with pretrained encoder models can
pave a new direction in this field.

SORT AGGREGATE

Acknowledgement We would also like to show our grati-
tude to Hubert Lubaczewski for providing us access to the
crowdsourced plan dataset.

9.
1]

[14]

[15]

[16]

[17]

REFERENCES

M. Ahmed, M. R. Samee, and R. E. Mercer.
Improving tree-lstm with tree attention. In 2019 IEEE
13th International Conference on Semantic
Computing (ICSC), pages 247-254. IEEE, 2019.

M. Akdere, U. Cetintemel, M. Riondato, E. Upfal, and
S. B. Zdonik. Learning-based query performance
modeling and prediction. In 2012 IEEE 28th
International Conference on Data Engineering, pages
390-401. IEEE, 2012.

P. Audze and V. Eglajs. New approach to the design
of multifactor experiments. problems of dynamics and
strengths. 35. Zinatne Publishing House, pages
104-107, 1977.

B. Baas. Nosql spatial-neo4j versus postgis. Master’s
thesis, 2012.

A.-L. Barabasi. The origin of bursts and heavy tails in
human dynamics. Nature, 435(7039):207-211, 2005.

S. Cai and K. Knight. Smatch: an evaluation metric
for semantic feature structures. In Proceedings of the
51st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 748-752, 2013.

T. Cover and P. Hart. Nearest neighbor pattern
classification. IEEFE transactions on information
theory, 13(1):21-27, 1967.

E. Depesz. Postgresql’s explain analyze made
readable, 2019. [Online; accessed 16-Dec-2019].

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

B. Ding, S. Das, R. Marcus, W. Wu, S. Chaudhuri,
and V. R. Narasayya. Ai meets ai: Leveraging query
executions to improve index recommendations. In
Proceedings of the 2019 International Conference on
Management of Data, pages 1241-1258, 2019.

B. Ding, S. Das, W. Wu, S. Chaudhuri, and

V. Narasayya. Plan stitch: Harnessing the best of
many plans. Proceedings of the VLDB Endowment,
11(10):1123-1136, 2018.

S. Duan, V. Thummala, and S. Babu. Tuning database
configuration parameters with ituned. Proceedings of
the VLDB Endowment, 2(1):1246-1257, 2009.

A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener,

A. Fox, M. Jordan, and D. Patterson. Predicting
multiple metrics for queries: Better decisions enabled
by machine learning. In 2009 IEEE 25th International
Conference on Data Engineering, pages 592—603.
IEEE, 2009.

G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. science,
313(5786):504-507, 2006.

T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, J. Ding,
A. Kristo, G. Leclerc, S. Madden, H. Mao, and

V. Nathan. Sagedb: A learned database system. 2019.
V. Leis, A. Gubichev, A. Mirchev, P. Boncz,

A. Kemper, and T. Neumann. How good are query
optimizers, really? Proceedings of the VLDB
Endowment, 9(3):204-215, 2015.

G. Li, X. Zhou, S. Li, and B. Gao. Qtune: A
query-aware database tuning system with deep

13

(19]

20]

(32]

reinforcement learning. Proceedings of the VLDB
Endowment, 12(12):2118-2130, 2019.

J. Li, A. C. Konig, V. Narasayya, and S. Chaudhuri.
Robust estimation of resource consumption for sql
queries using statistical techniques. Proceedings of the
VLDB Endowment, 5(11):1555-1566, 2012.

R. Marcus and O. Papaemmanouil. Plan-structured
deep neural network models for query performance
prediction. arXiv preprint arXiv:1902.00132, 2019.
M. D. McKay, R. J. Beckman, and W. J. Conover. A
comparison of three methods for selecting values of
input variables in the analysis of output from a
computer code. Technometrics, 42(1):55-61, 2000.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In Advances in
neural information processing systems, pages
3111-3119, 2013.

OpenStreetMap contributors. Planet dump retrieved
from https://planet.osm.org .
https://www.openstreetmap.org, 2017.

A. D. Popescu, V. Ercegovac, A. Balmin, M. Branco,
and A. Ailamaki. Same queries, different data: Can we
predict runtime performance? In 2012 IEEE 28th
International Conference on Data Engineering
Workshops, pages 275-280. IEEE, 2012.

PostGIS. Spatial and geographic objects for
postgresql, 2019. [Online; accessed 16-Dec-2019].

S. Ray, B. Simion, and A. D. Brown. Jackpine: A
benchmark to evaluate spatial database performance.
In 2011 IEEE 27th International Conference on Data
Engineering, pages 1139-1150. IEEE, 2011.

Y. Shido, Y. Kobayashi, A. Yamamoto, A. Miyamoto,
and T. Matsumura. Automatic source code
summarization with extended tree-lstm. In 2019
International Joint Conference on Neural Networks
(IJCNN), pages 1-8. IEEE, 2019.

V. Shiv and C. Quirk. Novel positional encodings to
enable tree-based transformers. Advances in Neural
Information Processing Systems, 32:12081-12091,
2019.

M. Stonebraker, L. A. Rowe, and M. Hirohama. The
implementation of postgres. IEEFE transactions on
knowledge and data engineering, 2(1):125-142, 1990.
J. Sun and G. Li. An end-to-end learning-based cost
estimator. arXiv preprint arXiv:1906.02560, 2019.

K. S. Tai, R. Socher, and C. D. Manning. Improved
semantic representations from tree-structured long
short-term memory networks. arXiv preprint
arXw:1503.00075, 2015.

J. Tan, T. Zhang, F. Li, J. Chen, Q. Zheng, P. Zhang,
H. Qiao, Y. Shi, W. Cao, and R. Zhang. ibtune:
individualized buffer tuning for large-scale cloud
databases. Proceedings of the VLDB Endowment,
12(10):1221-1234, 2019.

V. Thummala and S. Babu. ituned: a tool for
configuring and visualizing database parameters. In
Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pages 1231-1234.
ACM, 2010.

[33]
[34]

[35]

[36]

[37]

[38]

T. B. H. S. S. v2.17.3. Tpc benchmark h: Standard
specification v2.17.3.

T. B. D. S. S. v2.6.0. Tpc benchmark ds: Standard
specification v2.6.0.

D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang.
Automatic database management system tuning
through large-scale machine learning. In Proceedings
of the 2017 ACM International Conference on
Management of Data, pages 1009-1024. ACM, 2017.
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,

L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. In Advances in neural
information processing systems, pages 5998-6008,
2017.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A.
Manzagol. Extracting and composing robust features
with denoising autoencoders. In Proceedings of the
25th international conference on Machine learning,
pages 1096-1103. ACM, 2008.

W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Haciglimiis,
and J. F. Naughton. Predicting query execution time:
Are optimizer cost models really unusable? In 2013
IEEFE 29th International Conference on Data
Engineering (ICDE), pages 1081-1092. IEEE, 2013.
Z. Yang, Z. Dai, Y. Yang, J. Carbonell,

R. Salakhutdinov, and Q. V. Le. Xlnet: Generalized

autoregressive pretraining for language understanding.

arXw preprint arXiw:1906.08237, 2019.

L. A. Zager and G. C. Verghese. Graph similarity
scoring and matching. Applied mathematics letters,
21(1):86-94, 2008.

Y. Zhu, J. Liu, M. Guo, Y. Bao, W. Ma, Z. Liu,
K. Song, and Y. Yang. Bestconfig: tapping the
performance potential of systems via automatic
configuration tuning. In Proceedings of the 2017
Symposium on Cloud Computing, pages 338-350.
ACM, 2017.

14

