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ABSTRACT

Discovering the underlying structure of unstructured text can help make sense of the

rapidly growing textual data. This dissertation studies helpful inductive biases for designing

deep learning models for natural language structured prediction. Towards generalization

over new, previously unseen data, the search for appropriate inductive biases is necessary

for any machine learning based natural language processing system. This is also true for

deep learning models to predict complicated combinatory structures.

In this dissertation, we primarily focus on studying deep linguistic structured prediction

via independent factorization. We propose two kinds of generic inductive biases to

enchance the independent factorization, including Structural Inductive Biases and Natural

Language as Inductive Biases. We ground our studies on both broad-coverage linguistic

representations and application-specific representations.

Due to the compositionality of natural language, these language representations are

defined to be compositional structures. We study structural inductive biases by designing

factorization-oriented learning and reasoning mechanisms at the lexical, phrasal, and

sentential levels. Furthermore, knowledge is often encoded as human language. Taking

unannotated natural language as a source of supervision, we study task-oriented dialogue

state tracking by describing the intents and their argument slots in natural language. We

offer comparative studies showing how such inductive biases help generalize to new

domains and APIs.

In all cases, based on independent factorization, the experimental results show our

proposed inductive biases achieve competitive performance for each task. We expect that

the structural and natural language inductive biases studied in this work can potentially

help other linguistic structured prediction tasks via independent factorization.
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CHAPTER 1

INTRODUCTION

Human language is essential for human intelligence and arguably our most powerful

tool for learning and transmitting knowledge. With the advances of computers and the

internet, most of the world’s knowledge, such as conversations, scholarly research, factual

news, online education, and private mental health records, is now easily accessible as

digitized text. However, with limited information processing ability, we cannot easily

discover the knowledge hidden in the vast amount of unstructured text.

One classical way to study unstructured natural language is to represent the language

via various structured symbolic representations at different levels [1]. Before the revolution

of representation learning with deep learning, the NLP community had put decades of

effort into solving other linguistic structured prediction tasks to get various aspects of text

understanding. Let us look at some examples.

Firstly, we illustrate the classic linguistic structures, such as part-of-speech (POS), con-

stituency and dependency trees. We consider the sentence “The dog cannot find the

bone it hid from the other dogs.” as a running example. As shown in Figure 1.1, the

part-of-speech tagging assigns each word in a sentence a part-of-speech tag, such as

NOUN, VERB,ADJECTIVE, PRONOUN. How to capture the sequential correlations between

consecutive tags is the key modeling challenge for this task. Figure 1.2 shows the constituent

tree structure of the sentence. The constituent tree parsing requires recognizing the recursive

phrase structure of a sentence, such as noun, verb, prepositional phrases, and their nesting

in each other. Figure 1.3 shows the dependency tree structure of the sentence. Unlike the

constituency structure, here the dependency structure of a sentence is described in terms of

the directed bilexical grammatical relations between words. Each labeled arc represents

a directed relation from headwords to their dependents. Besides the above lexical and

syntactic structured information, as shown in the left part of Figure 1.4, natural language
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semantics is also widely studied as structured representations via tasks such as word sense

diambiguation, semantic role labeling and coreference resolution and so on. 1 Such structured

information is widely used in classical feature-engineering based NLP system [e.g., 2, 3, 4],

they are still helpful in deep learning based systems [5, 6, 7].

Secondly, we exmaine broad-coverage meaning representations. Besides the above structures

capturing specific lexical, syntactic or semantic information, a broad-coverage semantic

representation is a general-purpose meaning representation language aiming to represent

the multiple phenomena in a single structure for broad-coverage text. Figure 1.4 shows

the Abstract Meaning Representation [AMR, 8] of the example sentence. The node in the

graph represents abstract concepts, 2 and the labeled edges between the nodes represent the

relations between those concepts. As shown in Figure 1.2, the node “find-01” and “hide-01”

represents the word sense predefined in the Propbank [9]; The connected edges “:ARG0”

and “:ARG1” captures the semantic roles that can be derived from the semantic role labelling

tasks; While the node “dog/d1” means the subjects for the events “find-01,” “hide-01,” and

“possible-01” are the same dog, thus capturing the coreference information. Figure 1.5 shows

the foundational layer of Universal Conceptual Cognitive Annotation [UCCA, 10], which is a

multilayered framework for semantic representation that aims to accommodate the semantic

distinctions in the sentence and support open-ended extensions. Different from AMR, this

UCCA foundational layer mainly forms a tree-like structure, which focuses on the argument

structures of verbal, nominal, and adjectival predicates with also the interrelations between

them. Besides the above two broad-coverage meaning representations, we also studied the

DELPH-IN MRS Bilexical Dependencies [DM, 11] and Prague Semantic Dependencies [PSD,

12, 13]. More details about their captured semantic content and their structure properties

will be introduced comparatively in Section 2.2.1.

Finally, besides the above broad coverage syntactic and semantic structures in natural

language, researchers have designed various symbolic representations for specific applications.

Dialogue acts are firstly designed to represent the speech act or intention of each utterance,

to represent the functions of each utterance in the dialogue [14, 15]. Then inspired by the

1More details about various semantic phenomena will be introduced in Section 2.2.1

2AMR concepts include PropBank framesets, and other special dates, spatial entities, etc. More details about
AMR will be introduced in Section 2.2.1
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case theory [16], frame-based representation in GUS [17] are introduced to represent the

state of dialogue, which consists of a collection of slots and each with a set of possible

values. Figure 1.6 shows an example of dialogue state tracking, where each table is filled

with intent, slot, and slot values, representing a dialogue state for a user turn.

Lexical, syntactic structures, broad coverage semantic representations and application-

specific representations are interpretable to both human and computers. Such structured

representations can enable rigorous document analysis, easier knowledge organization, and

programmable reasoning. Furthermore, they can be potentially helpful to offer actionable

suggestions to guide human behavior, such as improving mental health counseling [18],

dialogue state tracking [19], scientific document analysis [20], and so on.

With the stunning rise of deep learning, modern NLP systems have achieved outstanding

performance on many benchmark tasks, and offer helpful services, such as machine

translation. Without any prior knowledge of the syntax or semantic structures for feature

engineering, they feed a large amount of labeled raw data into an end-to-end deep learning

model and outperform many previous pipeline models built from hand-crafted features.

Recently, pretrained large language models even became the unified base model for many

of the NLP tasks, which further boosts the performance.

However, recent research has shown that such end-to-end NLP systems often fail

catastrophically when given unseen inputs from different sources or via adversarial attacks.

The end-to-end black-box models lack booth interoperability and robustness, and they are

fragile to maintain when deployed to real users. Using those large language models

without any careful intervention can lead to fairness issues [21]. Using interpretable

symbolic representation in deep learning models can improve both the efficiency and

robustness of NLP systems. For example, combining the power of neural representation

with symbolic AMR representation has shown great benefits to NLP applications like

machine translation [22], summarization [23], question answering [24] and so on.

Predicting structured representations of text is essential for natural language processing,

even in the deep learning era. In this dissertation, we ground the studies of natural language

structured prediction on both broad-coverage meaning representations and application-

specific representations. Beyond pure data-driven methods, we primarily study deep

linguistic structured prediction via independent factorization. We propose two kinds of
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generic inductive biases to support the independent factorization for each task, including

structural inductive biases and natural language as inductive biases.

1.1 Motivation
In this section, we first examine the need for inductive biases in machine learning. Then

we analyze where current deep learning models can get inductive biases from, and finally,

we highlight some problems that this dissertation addresses inductive biases for deep

linguistic structured prediction.

1.1.1 Generalization: The Need for Inductive Bias

Any system (natural or artificial) that makes general inferences based on particular

and limited data must constrain its hypotheses somehow. With limited observations

and resources (time, memory, energy), our human intelligence of generalizing to new

environments makes us efficiently learn when interacting with the world and other human

beings. This efficiency largely depends on many inductive biases from human intelli-

gence [25], which can potentially be helpful for machine intelligence. According to extensive

cognitive science studies [25, 26, 27, 28, 29, 30], there are many inductive biases for human

intelligence, such as compositionality, causality, learning to learn, etc. We do not imply

machine intelligence should mimic human intelligence. Instead, we argue that those key

human inductive biases help overcome limited observations and resources that may inspire

us to design machine intelligence.

On the machine intelligence side, the no-free-lunch theorem for machine learning [31, 32]

tells us that inductive biases that influence hypothesis selection is necessary to obtain gener-

alization. Mitchell [33] argues that inductive biases constitute the heart of generalization

and, indeed a key basis for learning itself.

1.1.1.1 The Definition of Inductive Biases

Let us examine a concrete example: the popular supervised learning setting. We design

algorithms that can learn from a set of supervised training examples to predict a certain

target output for an input. The learning algorithm is presented with some training examples

that demonstrate the intended relationship between the input and output values. Then the

learner is supposed to learn a target function that captures the correlations between the
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inputs and outputs. Furthermore, we hope that the learned target function can approximate

the correct output, even for examples that have not been shown during training. We call

the ability to generalize unseen data a generalization. This generalization problem cannot

be solved without additional assumptions since unseen situations might have an arbitrary

output value. The kind of necessary assumptions is subsumed in the phrase inductive bias.

In this dissertation, following the definition of bias in [33], we define indutive bias as:

“Any bias for choosing one generalization over another, other than strict consistency with

the observed training instances.”

1.1.1.2 The Use of Inductive Biases

As the definition stated above, inductive biases can be any assumption beyond the

observed training data. In this dissertation, we focused on the supervised learning setting,

where observed training data only means the annotated training data directly available to

that task. Inductive biases are widely studied in the history of machine learning. In the

following, we list common ways of using inductive biases in machine learning.

For the popular supervised learning setting, let H refer to machine learning model

families, including deep learning models. Finding a target hypothesis h is reduced to

estimating the model parameters by fitting the training data. Hence, preferences beyond

training data can naturally be organized into two goals: choosing the hypothesis class

H and finding the h is necessary to generalize to new data. For example, different model

families can represent different hypothesis classes. For example, generalized linear models,

such as logistic regression and support vector machines, can only support linear decision

boundaries. Secondly, inductive biases are also used in feature engineering. For data that are

not linear separable, the choices of kernels design also introduce inductive bias in kernel-

based SVM models. There are also many assumptions about optimization for finding the

specific hypothesis h. For example, smoothness assumptions in the optimization method,

such as Stochastic gradient descent, were shown to have better generalization. Inference

Algorithms, such as combinatorial optimization approaches, such as graph cuts, partitions,

bipartie mactching, and dynamic programming can also be involved during the hypothesis

learning, which will also constrain the learning. In this dissertation, we mainly focus on

representation learning. For inference, we use methods, such as greedy search, maximum
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spanning connected graph, and dynamic programming for CKY parsing. Finally, the biases

in the Training Data will also influence the hypothesis finding. It is often the case that

available datasets do not exactly represent the data distribution of interest. One particularly

problematic case is when the dataset is biased against a particular demographic group,

which often leads to model predictions that unfairly disadvantage members of that group.

Hence, Data manipulation can also help find the desired hypothesis by augmenting the

original training data with inductive biases.

In this dissertation, we mainly use neural architectures and data manipulation to support

our inductive biases for deep linguistic structure prediction. To help understand the

inductive biases, in the following, we will first introduce two examples of inductive biases

used in the deep learning era, then we present the main study the goal of using inductive

biases for deep linguistic structured prediction with independent factorization.

1.1.2 Inductive Biases in Deep Learning

According to the universal approximation theorem [34], a properly parameterized neural

network can represent any function. Furthermore, training data seems rich enough for

many tasks nowadays. It seems purely data-driven deep learning can learn any target

function. Then, what kind of inductive biases do we need in the deep learning era? In the

following, we show two examples of inductive biases used in computer vision and natural

language processing in the deep learning era.

1.1.2.1 Computer Vision Example: Shift-Invariant

As the image classification task is shown in Figure 1.7, if a model is trained on the first

image with a cat in the bottom-left corner, we hope it can still predict “cat” when shift the cat

to the upper-right corner. Considering a feed-forward neural network, which can capture

any function, it may fail in this shifted case because not all the shifts will exist in the training

data. Augmenting the training data with the shifted images may mitigate this problem.

However, a more elegant way is to use convolutional neural networks with a pooling layer.

The pooling operation over convolutional filters is largely shift-invariant [35]. Beyond the

training data, the inductive bias here assumes the model should be shift-invariant. Similarly,

on the third image in Figure 1.7, we also can assume the model should be rotation-invariant

to predict correctly on unseen rotated cat images [36].
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1.1.2.2 Natural Language Example: Compositionality

For natural language processing, Figure 1.8 shows another example of inductive biases in

the named entity recognization task. Natural language is naturally compositional. Beyond

the training data, we mainly make assumptions about the compositional properties for

unseen data. Imagining that the training data contains the first annotated sentence: “The

Boxer can find the bone the other dogs hid from it.”, here the word “Boxer” is annotated

as “ANIMAL.” Now we add unseen new words, such as “cannot” and “Husky,” and also

add unseen new phrases by swapping the phrases “the bone” and “the other dogs.” Finally, it

forms an unseen new sentence in the bottom of the figure. Can our model still predict the

unseen word “Husky” in the unseen sentence as “ANIMAL” ? We can augment the training

data by enumerating unseen combinations for the original training data. However, it is

intractable. To achieve this inductive bias about compositionality, instead of augmenting

all combinations, various techinique are proposed to capture the underlying composing

patterns inspired by linguistic studies. For example, inspired by morphology study, word

piece [37] and byte pair encoding [BPE, 38] may learn the representation of unseen words,

and they are widely used in the recent advances in large language models, such as BERT [39],

GPT3 [40]. For unseen phrases and sentences, inspired by the assumption about recurrent

syntax and grammar, recurrent neural networks (such as LSTM [41], RNN [42], GRU [43],

and etc.) are proposed to capture the compositional patterns of natural language sequences.

Instead of the the strong recurrent assumption, a weaker word-order assumption also works

quite well by using a positional encoding with self-attention mechanism in the popular

transformer-based models [44]. Finally, inspired by the distributional hypothesis, where

words that are used and occur in the same contexts tend to purport similar meanings [45],

bidirectional architectures are the standard for modeling word embedding and language

models. (e.g., looking at both the past and future via Bidirectional LSTM, self-attention, and

so on)

Besides the shift-invariant, rotation-invariant and compositional assumptions for the

input image and natural language data, there are other assumptions beyond the training

data that can be used in deep learning era. In this dissertation, we extend the compositional

inductive biases for linguistic structured prediction tasks.
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1.1.3 Independent Factorization for Deep Linguistic
Structured Prediction

For systematic generalization, the search for appropriate inductive biases is necessary

for deep linguistic structured prediction.

First, beyond the compositionality of input natural language, we believe that both

the input text and output structured symbolic representations will follow the principle of

compositionality. The composition of input natural language and the composition of output

representations are correlated with each other. Hence, we propose to use the independent

factorization framework to study the compositional inductive biases in natural language and

its output structures.

1.1.3.1 Independent Factorization

Let us denote an observation x ∈ X . It can be any natural language text, such as the

sentence “The dog cannot find the bone it hid from the other dogs.” or a dialogue segment

as shown in Figure 1.6. We define an output structured prediction for x by y ∈ Y(x).

Here y is a structured symbolic representation for x. For example, y could be a sequence

of part-of-speech tags in Figure 1.1, a constituent tree in Figure 1.2 or a dependency tree

in Figure 1.3. It can also be a broad-coverage meaning representation, like AMR, UCCA,

or a dialogue state table. To represent the target function y = f (x), we adopt the popular

energy-minimization strategy by defining f (x) as the minimizer of an auxiliary energy

optimization problem.

f (x) = arg min
y∈Y(x)

E(x, y), (1.1)

where E(x, y) is a scoring function representing the energy between x and a candidate

output structure y.

In many NLP applications, the candidate output set Y(x) is finite but exponentially

large, and its size may depend on the input x. For both exact and approximate optimization

in Equation 1.1, the main challenges lie on how to model the representation of x and y, and

the interactions between them. Practitioners typically employ energy functions with specific

factorization structures to design efficient algorithms, by assuming the whole energy E(x, y)

can be decomposed as a sum of factors c, denoted by E(x, y) = ∑c∈C E(x, yc).

A popular choice to represent the factorization is to index both x and y as a set of
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subcomponents x = (x1, ..., xi, ....xN) and y = (y1, ...yj, ...yM). In AMR parsing as shown in

Figure 1.4, xi can be a word or multiword expression in a sentence, while yj can be a single

AMR node and relation. For dialogue state tracking in Figure 1.6, xi is an utterance in the

dialogue, while yi is the value for each intent and slot in the predicted frames. A factor c

may depend on multiple subcomponents of x and y.

The interdependence assumptions between those subcomponents in x and y are key

in a structured prediction model. In the Chapter 2, we show various representation

formalism (such as graphical models), structured learning (max-margin framework)

and inference approaches (dynamic programming, integer linear programming) to model

interdependence. In this dissertation, we always assume the independent factorization, where

each factor c only depends on a well-segmented subset of subcomponents yc and the aligned

x components (anchors) xc = a(yc). In other words, once the output is decomposed into

mutually exclusive output segments, we consider each segment as an atomic output part,

and each atomic part is independent from the others.

E(x, y) = ∑
c∈C

E(x, yc) = ∑
c∈C

E(x, a(yc), yc) (1.2)

where a(yc) is the alignment model to find how independent output parts yc are anchored to

the constituents of the observation x. Thus the prediction of each yc are independent from

each other, and can be locally decided by its aligned anchors.

Hence, this simple independent factorization can decompose the structured learning

into decomposed local learning (still constrained by some global constraints). In this way,

independent factorization largely simplifies the learning of linguistic structured prediction.

More importantly, it also makes the inference tractable, and thus can be easily employed in

the end-to-end neural network training framework.

Using AMR parsing in Figure 1.4 as an example, the independent factorization will first

segment the output y into small parts yc ∈ segout(y), then find the anchors xc in the input

sentence for each yc from the candidate decomposition set segin(x). For example, one of the

segmented yc in Figure 1.4 is a precategorized subgraph “(possible-01 :polarity -),” and its

anchor a(yc) is the anchor word “cannot.” The words “the,” “from” are mapped to empty

nodes. Thus, by leveraging the compositionality of the input and output, and the alignments

between their decompositions, we can focus on the prior knowledge about the correlations
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between the input and output. Futhermore, we can extend that compositionality to help

the model to generalize to unseen inputs and output structures.

During inference, when we encounter a new sentence as shown in Figure 1.9, we hope

the model can leaverage the seen decomposed mappings in the training data to generalize

to the unseen sentences. In this way, we first prepare a list of candidate anchors segin(x) =

{“The”, “dog”, “found”, “the”, “bone”, “it”, “hide”}, then the model will easily produce each

independent prediction yc of each anchor as {ϕ, “dog”, “find-01”, ϕ, “bone”, “it”, “hide”}

because most of the decomposed inputs are seen in previous Figure 1.4. Then we assemble

the nonempty yc by predicting the relations between each other and finally forms y via

postprocessing. 3

1.1.3.2 Three Steps in Independent Factorizations

In summary, in the independence factorization setting, we factorize the input and the

output via the compositionality of both the input and output, and then we hope the model

can learn correlations between the decomposed input and output parts. Hence, the whole

structured prediction problem is reduced into three challenges:

• Output Decomposition: How to decompose the output y into a set of independent

parts yc.

• Input Decomposition and Alignment Discovery: How to decompose x and offer a

set of candidates that may generate each independent part yc.

• Factor Modeling: How to find the relevant parts xayc
in x aligned to yc and model the

factorized energy score E(x, a(yc), yc)

The first question on independently decomposing y is either straightforward or has

been resolved by previously existing methods in our studied tasks. In this dissertation,

we mainly focus on the remaining challenges on modeling alignment and representation

learning, which requires different inductive biases to help with the modeling. We consider

the inductive biases to help modeling the above structured correlations between the input

and output structures as structual inductive biases, then we also use natural language as

3The postprocessing include merging coreference nodes (as the “dog” and “it”), and adding other attributes.
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inductive biases to extend the independent factorization for cross-domain and cross-task

generalization.

1.1.3.3 Structural Inductive Biases

To design the independent factorization for a new task, we require the prior knowledge

about structures of input and output, e.g., proper input decomposition, or the linguistic

analysis on the semantic-syntactic interface for the alignment information, or more recent

structural bias for deep learning based language modeling.

In this part, using the AMR parsing in Figure 1.10) as a running example, we consider

the structural inductive biases for its independent factorization. The first sentence and

its corresponding AMR graph (left) are in training data, and we need to build a model to

predict the corresponding AMR graph for the unseen sentence. Hence, we consider the

compositionality for both the input and output to offer more inductive biases beyond the

training data. We leave more details of AMR in Section 2.2.1.3 and more inductive biases

about decomposing AMR in Section 3.2.1.1. In this part, we mainly show the intuitive

understanding of the structural inductive bias for the independent factorization.

• Output Decomposition: To decompose an AMR graph, we need to know the meaning

of each part of the AMR graph. The nodes in AMR can be categorized into five main

categories (as shown in Figure 1.10 and the example in later section Section 2.2.1.3):

frame (e.g., “find-01,” “hide-01”), basic concept (e.g., “dog,” “jury”), string (“Pierre

Vinken”), number (e.g., “61”) and other constant (e.g., “-”), while there many templated

subgraphs used to represent special entities in the AMR, such as quantities, named

entities, special roles, and other entities in dates, times, percentages, phone, email,

URLs. In this part, we mainly show an example of subgraph segmentation for AMR,

which will simplify the independent factorization. As shown in the left AMR graph,

we draw a rectangle for the subgraph “(possible-01 :polarity -),” which means it forms

a subgraph when decomposing the output AMR graph. The whole subgraph will

be aligned to the word “cannot” the first sentence. Furthermore, when there comes

the second sentence, for the same word “cannot” in the new sentence, we hope the

model can produce the same subgraph “(possible-01 :polarity -)” from it. Besides this

subgraph, other segmented constituents in the left AMR graph will be each single
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node. While in other AMR graphs (Section 2.2.1.3), we must consider the subgraphs

used to represent the special entities. According to the above knowledge about the

AMR graph, we use rule-based recategorization preprocessing to do the segmentation,

which is inspired by the previous work on addressing the data sparsity issue in AMR

parsing [46, 47, 48, 49]

• Input Decomposition and Alignment Discovery: As shown in the first row of Lego

blocks in Figure 1.10, it naturally forms the decomposition of the first sentence for

the AMR parsing case. However, for a more complicated case in Section 2.2.1.3,

rather than each standalone token, we may still need to consider other multiword

expressions and the special entities in the sentence. Furthermore, when considering

the previous UCCA parsing example shown in Figure 1.5, we also need to decompose

the input sentence into phrases so that it can be easily aligned to the nonterminal nodes

in the decomposed UCCA graph. Another problem after the input decomposition is

the alignment discovery problem. We can notice two “dog” lego blocks in the first

sentence, and we also have two “dog” AMR nodes. We have the words “from” in the

sentence. However, it cannot align to any node, the AMR nodes. We need to build

an alignment model to distinguish the alignments between them. In sum, we must

consider the input decomposition with the inductive biases on the semantic contents

in the symbolic representations and how they are derived from the surface tokens.

• Factor Modeling: The above output and input decomposition are usually done with

prior knowledge about the language and the corresponding symbolic representations.

Once we get the segmented nodes or subgraphs for output decomposition and the

Lego blocks as the input decomposition, the whole structured prediction problem

is simplified to learning a set of models. For example, we hope the model can map

the words “cannot” into the subgraph “(possible-01 :polarity -),” and map “hid” into

“hide-01.” When there is explicit alignment information, it will be easy to model

them with aligned input and output pairs. However, when there are uncertainties

about the alignments, we may need to model the alignment discovery model with

the factor modeling jointly. We propose a latent alignment model for AMR parsing

in Section 3.2. Besides that, considering the same word “find” in both sentences, we
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need a discriminative contextualized representation to predict the correct meaning

representation as the “find-01” for the first sentence and the “find-02” for the second

sentence. The efficient contextualized representation is also the key to making such

independent factorization possible. We will introduce more details of the two-stage

AMR parsing in Section 3.2, which introduces how to assemble those local decisions

about nodes and edges into a graph.

In sum, although the independent factorization simplifies structured prediction into

simpler classification problems, however, we need many inductive biases to make the

right design choices. Besides the above AMR parsing running example, we also design

different models with independent factorization for a set of tasks, e.g., parsing graph-based

representations with lexical anchoring (Section 3.2.1) and phrasal anchoring (Section 3.3.2),

observing dialogue in therapy (Section 4.2).

1.1.3.4 Natural Language as Inductive Biases

We also study natural language description as inductive biases to describe the function

of each decomposed output part. We still take the AMR Parsing in Figure 1.10 as a running

example. When we don’t know the meaning of “find-01” and “find-02,” to make the

word “find” in the second sentence can generate the “find-02” instead of “find-01,” it still

needs a lot of aligned pairs about the “find” from other training data to learn. This is true for

both human and machines. However, if we look at the explanation of “find-01” and “find-02”

in PropBank [9], we may easily find that “find-01” means discovery, while “find-02” means

verdict. Hence, human now can easily tell that the second “find” should predict “find-02”

because it means “verdict” by the jury, without any more examples about “find-02.” Once

we know the explanation of “find-01” and “find-02,” we can disambiguate them because

we understand the meaning of the natural language that is used for the explanation. We

believe that the knowledge in the natural language can also be used as inductive biases for

machine learning. In this dissertation, we mainly extend the independent factorization of

task-oriented dialogue state tracking with natural language descriptions (Chapter 5). We

show that natural language as inductive provides great zero-shot performance on unseen

dialogue services.

In sum, motivated by the compositional property of natural language and related
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symbolic representation, we propose to use independent factorization to model the corre-

lations between the input and output structures. Furthermore, to make the independent

factorization work for our models, we present a detailed analysis of how to do it for each

task, and how to use the above inductive biases to help model the independent factorization.

1.2 Dissertation Statement and Research
Contributions

Our claim is that by designing structural inductive biases and natural language as induc-

tive biases, models with naive independent factorization can achieve strong performance

at predicting the natural language structures across multiple broad-coverage meaning

representations and application-specific representations.

In this dissertation, focusing on the independent factorization setting, we show that

our proposed inductive biases can offer discriminative features to achieve competitive and

generalizable performance on broad-coverage meaning representations and application-

specific representations.

We next summarize the main contributions of this dissertation, addressing some of the

open problems mentioned in the previous section.

1. Based on the assumption of independent factorization, we proposed a unified parsing

framework to support both explicit lexical anchoring (including DELPH-IN MRS

Bilexical Dependencies [DM, 11] and Prague Semantic Dependencies [PSD, 12, 13]),

and implicit lexical anchoring (AMR). Over 16 teams in the shared tasks, my parser [50]

ranked 1st on AMR, 6th in DM, and 7th in PSD. By combining Perturb-and-MAP

sampling [51] with differentiable Gumbel-Softmax Sinkhorn Networks [52], we can

approximately infer the discrete latent-alignment variable in lexical anchoring of

the independent factorization setting. The phrasal-anchoring Universal Conceptual

Cognitive Annotation [UCCA, 10] and Task-oriented Dialogue Parsing [TOP, 53] are

similar to a constituency tree structure, except for unseen phenomena such as remote

edges and discontinuous spans, we extend the existing algorithmic inductive bias for

tree structure prediction and Cost-augmented CKY inference to the new UCCA and

TOP parsing tasks. Powered by a strong span-representation learning method, my

system [50] ranked 5/16 on UCCA parsing, and it can be reused for TOP parsing after a
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few preprocessing steps, and outperform several baseline models.

2. To provide real-time guidance to therapists with a dialogue observer, we decompose

the dialogue structure analysis with two independent prediction tasks: (1) categorizing

therapist and client MI behavioral codes and (2) forecasting codes for upcoming

utterances to help guide the conversation and potentially alert the therapist. For

both tasks, I studied a hierarchical gated recurrent unit (HGRU) with the word-level

attention and sentence-level attention to distinguish different importance of words and

sentences [54]. Our experiments demonstrate that our models can outperform several

baselines for both tasks. We also report the results of a careful analysis that reveals

the impact of the various network design tradeoffs for modeling therapy dialogue.

3. By decomposing the dialogue state tracking into four independent subtasks, we use

natural language description as inductive biases to describe the functions of each

independent intent/slot label, thus capturing the functional overlapping between

different services. We show that such natural language descriptions can support the

zero-shot learning for each independent subtask for unseen service. We are among

the first to use large pretrained language models for description-based dialogue state

tracking. We offer detailed comparative studies on how to transfer inductive biases

to new domains and APIs with overlapping functions and task structures, including

encoding strategies, supplementary pretraining, homogeneous, and heterogeneous

evaluations.

1.3 Dissertation Outline
In the dissertation, we discuss prior work related to an application in its own chapter,

instead of putting them all in a single chapter. Furthermore, at the beginning of each

application chapter, we will first show the motivation and inductive biases of applying

independent factorization to each task. Then we offer the details about how we model the

independent factorization. This dissertation is divided into five parts, which we describe

below.

Chapter 2 reviews the background of this dissertation study with two sections:

• Structured Prediction, Learning, and Inference. We summarize the recent advances in
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deep structured prediction with respect to representational formalism, learning,

and inference, respectively. We overview of the development of representation

learning methods for natural language, from feature selection to deep learning based

representation learning methods.

• Structures in NLP. We first provide the necessary background about natural language

structures to highlight our contributions in the remaining chapters better.

Chapter 3 describes the details of structural inductive biases for lexical and phrasal anchoring.

We first introduce lexical and phrasal anchoring analysis to decompose the output structures

for independent factorization, where each part can be derived from its anchoring words or

phrases in the input sentence. For lexical anchoring, we propose a unified model to support

both explicit and implicit alignment information between each input and output. For

phrasal anchoring, we compared different ways to learn the contextualized representation

for the spans and how they can bring discriminative features to our locally-dependent

model. We show that with the above lexical-anchoring and phrasal-anchoring based

structural inductive biases for energy factorization and contextualized representation

learning, our model can learn efficient discriminative features for the anchor and achieve

high performance in the locally-independent model.

Chapter 4 presents structural inductive biases for sentenctial anchoring. Besides the

above lexical and phrasal anchoring in a single sentence, we extend our study to structures

beyond a single sentence. In this chapter, we study the sequential dialogue flow structure

in a style of therapy called Motivational Interviewing [MI, 55, 56], which is widely used

for treating addiction-related problems. Sentence-level tags called Motivational Interview

Skill Codes are designed to represent the intention of each utterance and the dialogue the

flow of the whole therapy session. We decompose the dialogue structure analysis with two

independent prediction tasks: categorizing and forecasting the dialogue flow in the form

of MISC codes. By developing a modular family of neural networks for two independent

tasks, we show that the above mechanisms on dialogue representation can efficiently model

the sequential structure of dialogue flow, and offer realtime guidance to a therapist.

Chapter 5 introduces natural language as inductive biases. We studies how to use

natural language descriptions to represent the meaning of output symbols (intents and
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slots) in task-oriented dialogue state tracking, which helps to reduce the poor scalability

to transfer to unseen domains and services. We study three main challenges of using

natural language for label representation: schema encoding, supplementary training, and

description styles.

Chapter 6 concludes by providing a summary of contributions and a discussion of

possible directions of future work.
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Figure 1.1: The structure of POS tags for the sentence “The dog cannot find the bone it hid from
the other dogs.” This image shows the tag set used in Penn Treebank [57].

Figure 1.2: The structure of constituent tree for the sentence “The dog cannot find the bone it
hid from the other dogs.”

Figure 1.3: The structure of dependency tree for the sentence “The dog cannot find the bone it
hid from the other dogs.”
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Figure 1.4: The broad coverage meaning representation AMR for the sentence “The dog
cannot find the bone it hid from the other dogs.” It represents multiple phenomena in a single
structure, inclduing the predicate-argument structure and word sense disambiguiation in
semantic role labelling, coreference resolution, and so on.

Figure 1.5: The broad coverage meaning representation UCCA for the sentence “The dog
cannot find the bone it hid from the other dogs.”
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Figure 1.6: An example for dialogue state tracking.

Figure 1.7: In the image classication task, we hope the learned model can still recognize
“cat” for the unseen image with shifted or rotated cat.
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Figure 1.8: In the named entity recognization task, we hope the learned model can still
recognize “ANIMAL” for new word “Husky” in unseen context with newly composed
words, phases, and sentences.
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Figure 1.9: Independence factorization for parsing a new sentence “The dog found the bone it
hid” into an AMR graph.
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Figure 1.10: Structural inductive biases of AMR decomposition, and AMR alignments.



CHAPTER 2

BACKGROUND

In this chapter, we will give an overview of the linguistic structure prediction and recent

advances in deep structured prediction. Then we briefly review the background on symbolic

representations for natural language, including broad-coverage meaning representations

and application-specific representations.

2.1 Deep Linguistic Structured Prediction and
Independent Factorization

Due to the power of representation learning, deep learning is widely used to extract

sophisticated representations for the inputs in various NLP tasks. In this dissertation,

instead of focusing on a single task, we systematically study the representation learning

challenges for multiple tasks based on the independent factorization assumption. In this

section, We first introduce the recent advances in deep structured prediction with respect

to representational formalism (Section 2.1.1) and introduce the independent factorization

with factor graphs. Then we briefly summarize the progress on representation learning for

natural language (Section 2.1.2) and show why the independent factorization is possible

with the contextualized representations. Finally, we also summarize the recent advances on

inference (Section 2.1.3) for linguistic structured prediction.

2.1.1 Formulations of Structural Interdependence

Structured prediction refers to machine learning models that learn a target function to

predict mulitple interrelated and dependent outputs. For representing the target function,

different formulations exists. In this section, we mainly review the recent advances of

representations for modeling the structural interdependences.
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2.1.1.1 Graphical Models

A graphical model is a probabilistic model using a graph to express the conditional

dependence structure between random variables. Generally, probabilistic graphical models

use a graph-based representation as the foundation for encoding a distribution over a

multidimensional space, which represents a set of independences that hold in the specific

distribution. Two branches of graphical representations of distributions are commonly

used, namely, Bayesian networks and Markov random fields. Both families encompass the

properties of factorization and independence, but they differ in the set of independences

they can encode and the factorization of the distribution that they induce.

2.1.1.2 Constrained Conditional Models

Besides the graphical models to declaratively represent the structural interdependence,

constrained conditional models [CCM, 58] are for the same goals. More specifically, CCM

emphasizes augmenting the learning of conditional models with declarative constraints.

It aims to support constrained decisions in an expressive output space while maintaining

modularity and tractability of training and inference. These constraints can express either

hard restrictions, completely prohibiting some assignments, or soft limits, penalizing

unlikely assignments. One popular formalism to represent the constraints is to use an

integer linear programming (ILP), which has been widely used to constrain learning in

many NLP tasks [59]. The declarative linear objective functions, linear constraints, and the

availabilities of the off-the-shelf solvers make this formalism very easy to use.

2.1.1.3 Declarative Constraints in Deep Learning

Recently, to inject known hand-crafted constraints between discrete variable assignments

in the deep neural networks, one fundamental challange is how to represent the constraints

in end-to-end differentiable ways [60]. For example, Li and Srikumar [61] propose to use

differentiable fuzzy logic operators to augment the neural networks with boolean logic.

Pacheco and Goldwasser [62] introduce a declarative Deep Relational Learning frame-

work (DRAIL) integrating neural representation learners with probabilistic logic. Besides

representing the constraints as logic forms, much recent work also studies representing

constraints with discrete latent variable models, such as StructVAE for latent tree-structured

variables [63, 64]. Our work on latent alignment models also falls into this category.
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2.1.1.4 Learning Constraints in Deep Learning

Besides injecting declarative constraints, recent research also learn the constraints in end-

to-end ways. Belanger and McCallum [SPEN, 65] define energy functions that can learn the

arbitrary dependencies among parts of structured outputs by relaxing the whole structured

outputs into continuous vectors, Following this, inference network [66] was proposed

to learn the constrained network for inference, which approximates the cost-augmented

inference during training and then fine-tuning for test-time inference.

2.1.1.5 Independent Factorization

In this dissertation, we mainly use the undirected Markov random fileds to represent

our independent factorization assumptions. As shown in Figure 2.1, each circle represents

a variable, while each rectangle indicates a factor between the input sentence variable x

and each decomposed segments of output structures y. The difference between the left and

right figure is in the alignment variable a in the center. In the left figure, the shaded circle a

means the alignment is explicitly observed after the decomposition. In the right figure, the

alignment variable a is not observed.

As discuessed in Section 1.1.3, to apply independent factorization for each task, we

need to resolve three main challenges to formulate the above factor graph as E(x, y) =

∑c∈C E(x, a(yc), yc), including (1) Output Decomposition: Decomposing the output y into a

set of independent parts yc. (2) Input Decomposition and Alignments Discovery: Decom-

posing x and derive the aligned input xayc
at the index ayc . (3) Factor Modeling: Modelling

each yc and its relevant parts xayc
to compute the energy score E(x, a(yc), yc).

In the following subsection, we show that rapid progress in contextualized represen-

tation learning can offer discriminative features for modelling the relative parts of xayc
,

thus make the challenge (3) (factor modeling) of independent factorization possible. Then

we provide the background knowledge about structures in NLP in Section 2.2, and we

briefly show that such prior knowledge about anchoring and compositionality are the main

source of inductive biases that guide us to find the decomposition and alignment in the

challenge (1) and (2). We extend the detailed analysis about independent factorization in

each application chapter.
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2.1.2 Neural Representation Learning

Structured prediction requires the learning can capture both the discriminative interac-

tions between x and y and also allow efficient combinatorial optimization over y. Ideally,

we hope neural representation learning can handle all of this.

The key challenge of trying to apply analytical and computational methods to text data

are how to represent the text in a way that is amenable to operations such as similarity,

composition, etc. Besides the early day one-hot representation and TF-IDF extensions [67],

word embedding and neural contextualized representation are widely used in modern deep

learning based models. In this section, we review the recent advances from static word

embedding based methods to attention-based dynamic features selection and contextualized

representation. Finally, we also introduced the rapid progress in language encoding

architectures, from recurrent neural networks to transformer, and the corresponding

pretrained language models ELMo [68], BERT [39], GPT3 [40], etc.

2.1.2.1 Static Word Embedding

Word embeddings are commonly categorized into two types [69, 70, 71], depending

upon the strategies used to induce them: (1) Prediction-based models, via local data in sen-

tence (a word’ context). (2) Count-based models, via the global corpus-wide statistics (such

as word counts, co-occurrece).

Skip-gram with negative sampling [SGNS, 72] and GloVe [70] are among the best-known

models for the two types, respectively. However, they create a single fixed representation

for each word, a notable problem with the static word embeddings are that all senses of a

polysemous word must share a single vector.

2.1.2.2 Contextualized Representation

To resolve the above issue of static word embedding, sequence encoders, such as

LSTM [41], Transformer [44], can be used as contextualizing models to encode the whole

context and produce a contexualized representation for each word, phrase or the whole

sentence. In this way, the contextualized representation dynamically depends on the entire

sentence. Furthermore, based on the neural sequence encoding architectures, pretraining

language models with a large amount of text can create a more powerful contextualized

representations [73]. ELMo [68] creates contextualized representations of each token by
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concatenating the internal states of a 2-layer BiLSTM trained on a bidirectional language

modeling task. In contrast, BERT [39] and GPT-2 [74] are bidirectional and unidirectional

transformer-based language models, respectively. Peters et al. [75] shows that ELMo

contextualized representation is more suitable to be used as a fixed word embedding, as also

shown in our dissertation on lexical and phrasal anchoring based parsing (Chapter 3) and

sentenctial anchoring based MISC code prediction (Chapter 4). While for BERT and GPT-2,

finetuning them on downstream task will lead to better performance, which also inspired

us on exploiting natural language description to understand each output components (such

as intent, slot labels) in task-oriented dialogue (Chapter 5). One assumption behind the

independent factorization is that local models with rich features may perform competitively

or better than global models also exists in the pre deep-learning era. Before the rising of

deep learning in 2012, the well known MEMM-based Stanford pos tagger is the state-of-art

model at that time. Instead of using a single normalized, global CRF model for the sequence

modeling, richer features seem diminish the label biases problems in the MEMM [76, 77].

However, the rich global features required heavy engineering in ten years ago. Recently,

according to the NLP-Progress website, 1 which tracks the state-of-art models for each task,

we found that the state-of-art models for many sequences tagging tasks (such as named

entity recognization, part-of-speech tagging) are attention-based models without any CRF

layer. In this dissertation, the contextualized representation learned from deep learning is

the key to our independent factorization, which helps our decomposed factor models to

make local decisions with a set of discriminative and global features, without any heavy

feature engineering. Furthermore, large pretrained language model also offers great power

to use natural language in our modeling, such as prompt-based models [78, 79].

2.1.3 Inference

Learning with structured data typically involves searching or summing over a set with

an exponential number of structured elements, for example, the set of all parse trees for a

given sentence. In the deep learning community, it is common to fit models by computing

point estimates, such as the MLE or MAP estimate. Such MAP inference approaches seem

particularly appealing since they are computationally fairly cheap and can use the before

1http://nlpprogress.com/english/named_entity_recognition.html visited on July 19, 2022

http://nlpprogress.com/english/named_entity_recognition.html
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reducing overfitting. In this way, the neural models only learn a single set of parameters.

However, the point estimation does not capture the associated uncertainties [80, 81]. Hence,

we care about both MAP and marginal inference in structured prediction research.

2.1.3.1 MAP Inference

Various exact inference methods are proposed for MAP inference in NLP tasks. Exact

inference methods include dynamic programming based methods (such as viterbi [82] for

hidden markov models, CKY for context-tree grammars [83, 84, 85] , Max Spanning Arbores-

cence for spanning tree [86, 87], and so on), and Integer Linear Programming [59, 88, 89]. On

the other side, approximate inference methods include various sampling methods [90, 91],

search-based methods [92, 93, 94], and Linear Programming Relaxations [95, 96].

2.1.3.2 Marginal Inference

Integration is at the heart of marginal inference, whereas differentiation is at the heart

of optimization. Corresponding to the each of the above exact MAP inference algorithms,

various methods are proposed for marginal inference. They compute marginal probabilities

and partition functions which are central to many methods, such as EM [97, 98], constrative

estimation [99], Conditional Random Field [CRF, 100], max-margin training over all candi-

date targets [101]. For linguistic structured prediction, exact marginal inference methods

include forward-backward algorithm for HMM [102], Inside-outside [97], Matrix-Tree

Theorem for nonprojective dependency structures [103, 104].

In this dissertation, we use variational inference to marginalize out the latent alignment

variable in Section 3.2.3. While for the other parts of this dissertation, the assumption

of independent factorization simplified the inference into either greedy (Chapter 4 and

Chapter 5) or dynamic programming based exact MAP inference (such as the dynamic

programming parsing the dependency and constituency structures in Section 3.2.2 and

Section 3.3, respectively)

2.2 Symbolic Representations for
Natural Language

In Chapter 1, we have listed several lexical, syntactic and semantic structures in NLP. In

this section, we will mainly introduce more detailed background on the broad-coverage
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semantic presentations (Section 2.2.1) and application-specific representations on dia-

logue (Section 2.2.2).

Before we introduce each semantic representation, we first define the term anchoring

and anchors, and then we use them to organize semantic representations in our dissertation.

• Anchoring: As the same definition of anchoring used in the Meaning Representation

Parsing (MRP) shared task [105], we distinguish different flavors of semantic graphs

based on the nature of the relationship they assume between the linguistic surface

signal (typically a written sentence, i.e., a string) and the nodes of the graph. We refer

to this relation as anchoring (of nodes onto substrings); other commonly used terms

include alignment, correspondence, or lexicalization.

• Anchor: We define the term anchor as the surface substring in the sentence, which

is anchoring to the corresponding node in the graph. According to the type of the

substring (lexicon, phrase, sentence, and so on), we mainly classify the type of the

anchors into lexical anchoring, phrasal anchoring and sentential anchoring.

2.2.1 Broad-Coverage Semantic Representations

For linguistic analysis, structures have been studied from subword-level morphol-

ogy [106], word-level lexicon semantics [107], to single sentence syntax/semantic representa-

tions [108, 109, 110], and multisentences discourse analysis [111, 112, 113]. A broad-coverage

semantic representation is a general-purpose meaning representation language aiming to

represent the multiple phenomena in a single structure for broad-coverage text.

As shown in Figure 1.3, syntactic dependency structures capture the directed bilexical

grammatical relations between words. Each labeled arc represents a directed relation from

heads to dependents. However, different from the syntactic dependency tree, semantic

dependency graphs aim to represent the semantic dependencies in the full sentence,

including word sense distinctions, the reentrances for coreference, predicate-argument

structures in semantic role labeling, named entities representations, and so on. Because of

the reentrances, semantic representations can be a graph rather than a tree-like structure.

This dissertation covers broad-coverage graph-based semantic representations in a

single sentence, which involves lexical-anchoring and phrasal-anchoring representations. For

lexical anchoring, we cover the DELPH-IN MRS Bilexical Dependencies [DM, 11] and
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Prague Semantic Dependencies [PSD, 12, 13], Abstract Meaning Representation [AMR, 8];

While for phrasal anchoring, we study Universal Conceptual Cognitive Annotation [UCCA,

10]. We consider a famous sentence (#20001001 in MRP Corpus as a running example, which

is also the first sentence from Wall Street Journal (WSJ) Corpus from the Penn Treebank [114]:

“Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov.29.” This sentence

contains some interesting linguistic phenomes, such as morphology words, person, and

date named entities. Taking it as an example, we will introduce the detailed properties for

each of the representations. 2

2.2.1.1 DELPH-IN MRS-Derived Bilexical Dependencies

It originates in a manual reannotation, dubbed DeepBank [115], with syntactic-semantic

analyses of the LinGO English Resource Grammar [116] in logical forms. These logical forms

are often referred to as English Resource Semantics [ERS, 117], and the underlying grammar

is rooted in the general linguistic theory of Head-Driven Phrase Structure Grammar [HPSG,

118]. Then Ivanova et al. [11] propose a two-stage version to transform the ERS logical

forms into bilexical semantic dependency graphs. ERS logical forms are firstly transformed

into Elementary Dependency Structures [EDS, 119], then EDS are simplified into pure

bilexical dependencies, dubbed DELPH-IN MRS Bilexical Dependencies [DM, 11]. As

shown in Figure 2.2, graph nodes in DM are anchoring to the surface tokens. Hence, DM

is lexical anchoring. However, the underlying tokens are not fully covered in the graph.

For example, the word “will” does not produce any node in the DM graph. Edges mainly

indicate semantic argument roles (ARG1, ARG2, ...) into the relation corresponding to their

source node, 3 but there are some more specialized edge labels too. For example, it uses

compound to reflect the name “Pierre Vinken” as a whole, and it uses BV (bound variable,

e.g., the word “a”) as a reflection of quantification in the underlying logic quantification.

In summary, DM is lexical anchoring, and it captures semantic phenomena including

predicate-argument structures, word-sense differentiation, quantification, and scope.

2The summarization paper in MRP workshop [114] introduces more publicly accessible samples and another
example-based comparative studies for different meaning representations.

3The annotation of predicate-argument structures is based on the Semantic Inferface (SEM-I) [120] in the ERG.
Please refer to this introduction for more details. https://github.com/delph-in/docs/wiki/ErgSemantics_
Interface

https://github.com/delph-in/docs/wiki/ErgSemantics_Interface
https://github.com/delph-in/docs/wiki/ErgSemantics_Interface
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2.2.1.2 Prague Semantic Dependencies

Besides DM, there is another line of research to simplify the richer syntactic-semantic rep-

resentations into bilexical semantic dependencies. It adopts the reduction of tectogrammati-

cal trees (or t-trees) from the linguistic school of Functional Generative Description [FGD,

12, 121] into PSD. The Prague Czech-English Dependency Treebank [PCEDT, 12] is a set of

parallel dependency trees over the WSJ texts from the PTB and their Czech translations. The

PSD bilexical dependencies are extracted from the tectogrammatical annotation layer. Top

nodes are derived from t-tree roots; Especially, they mostly correspond to main verbs. In the

case of coordinate clauses, there are multiple top nodes per sentence. Figure 2.3 shows the

PSD representation of our example sentence. One major differences are the role labels and

verb frames, they are grounded in a machine-readable valency lexicon [122], and the frame

values on verbal nodes indicate specific verbal senses in the lexicon. In a summary, PSD

is also lexical anchoring, and it captures the same semantic contents with DM (including

predicate-argument structures, word sense, quantification and scope), however, with a

different formation and different frame lexicon.

2.2.1.3 Abstract Meaning Representation

As shown in Figure 2.4, Abstract Meaning Representation represents sentence mean-

ing as directed graphs with labeled nodes (concepts) and edges (relations). AMRs are

rooted, labeled graphs that are easy for people to read and easy for programs to traverse.

AMR concepts are either English words (“board”), PropBank framesets (“join-01”), or

special entity keywords (“date-entity,” “person,” and “name,” etc.), quantities (“temporal-

quantity” and “distance-quantity,” etc.), and logical conjunctions (“and,” etc). AMR strives

for a more logical, less syntactic representation. For example, it represents the word “nonex-

ecutive” with a negation “(:polarity -)” with the concept “executive.” Furthermore, unlike

DM and PSD on predicate-argument representation, AMR extensively uses PropBank

framesets [9, 109]. For example, It represents the verb “join” using the frame “join-01.”

At the meantime, AMR also newly designs special frames to reuse those core roles in

Propbank. As shown in Figure 2.4, the word “board” have a role “ARG1-of ” to a special

frame “have-org-role-91.”

The above abstraction allows for concepts and relations not explicitly mentioned in the
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text but leaves open the question of how these are derived from the text. This question

is important because training statistical AMR parsers typically start with a conjectured

alignment between tokens and the graph elements. Most AMR parsers [e.g., 48, 123, 124, 125,

126, 127, 128] use either the JAMR aligner [123] or the ISI aligner [129] for this purpose. 4

We introduced more details about AMR alignment in Section 3.1.2, and we show that AMR

nodes and subgraphs are implicitly anchored to the lexical tokens or entities. In summary,

AMR is implicit lexical-anchorin, and it captures more semantic content than DM and PSD.

Besides the common predicate-argument structure, word sense, qutification, and scope (by

placing “polarity”), AMR also represents the lexical decomposion, anaphoric coreference,

and entity-linking.

2.2.1.4 Universal Conceptual Cognitive Anotation

Similar to AMR, UCCA is designed to abstract the semantic scheme away from its

surface and syntactic forms. UCCA uses directed acyclic graphs (DAGs) to represent its

semantic structures. The atomic meaning-bearing units are placed at the leaves of the

DAG and are called terminals. The nodes of the graph are called units. A unit may be

either (i) a terminal or (ii) several elements jointly viewed as a single entity according to

some semantic or cognitive consideration. In many cases, a nonterminal unit is comprised

of a single relation and the units it applies to (its arguments). In some cases it may also

contain secondary relations. Hierarchy is formed by using units as arguments or relations

in other units.

While different from previous DM, PSD, and AMR, categories are not annotated on

nodes, but edges and represent the descendant unit’s role in forming the semantics of the

parent unit. The foundational layer covers the entire text, so each word participates in at

least one unit. It focuses on argument structures of verbal, nominal, and adjectival predicates

and the interrelations between them. Argument structure phenomena are considered

fundamental by many approaches to semantic and grammatical representation and have a

high applicative value, as demonstrated by their extensive use in NLP. The foundational

layer views the text as a collection of Scenes. A Scene can describe some movement or

4Other aligners exist, e.g., Chen and Palmer [130] uses dependencies, but raw text alignments are more
prevalent.
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action or a temporally persistent state. As shown in Figure 2.5, for the event “join the board,”

“join” with an incoming edge “P” denoting the category “Process,” which is the primary

relation of a scene that evolves in time. While the edge “A” linked to the nonterminal

node corresponding to “Pierre, Vinken, 61 years old” means the unit “Pierre, Vinken” is the

participant of the scene. In sum, UCCA is phrasal anchoring, and its foundational layer

captures predicate-argument structures, anaphoric coreference, representing less semantic

content than DM, PSD, and AMR. However, UCCA shows more benefits on cross-lingual,

easy annotation, and extensible modularity.

2.2.1.5 Summary

For easy reference, in Table 2.1, we summarize the background of broad-coverage

meaning representations for the their anchoring type and captured semantic phenomena.

For more detailed comparative studies over the state-of-art semantic representation, please

refer to the paper [131].

2.2.2 Application-Specific Representation on Dialogue

In this dissertation, we ground the study on application-specific representation on

dialogue. The following section will introduce the dialogue representations via dialogue

act, dialogue state, and richer conversational semantic representations.

2.2.2.1 Dialogue Act and MISC Codes

In the utterance-level, dialogue acts are designed to represent the function of each

utterance in the dialogue. The key insight behind the dialogue act is that each utterance

in a dialogue is a kind of action being performed by the speaker. The history of dialogue

act can be derived back to the philosopher Wittgenstein [14]. A dialogue act has two main

components: a communicative function and a semantic content. Bunt et al. [15] provides an

ISO project developing an international standard for annotating dialogue with semantic

information, particularly concerning the communicative functions of the utterances, the

kind of content they address, and the dependency relations to what was said and done

earlier in the dialogue. Similarly, Motivational Interview Skill Codes [MISC, 55, 56]

are also proposed to represent the functions of each client and therapist utterance in the

psychotherapy dialogue. This part will mainly introduce the MISC Codes for psychotherapy
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dialogue.

Motivational Interviewing (MI) is a style of psychotherapy that seeks to resolve a

client’s ambivalence towards their problems, thereby motivating behavior change. Several

meta-analyses and empirical studies have shown MI’s high efficacy and success in psy-

chotherapy [132, 133, 134]. However, MI skills take practice to master and require ongoing

coaching and feedback to sustain [135]. Given the emphasis on using specific types of

linguistic behaviors in MI (e.g., open questions and reflections), fine-grained behavioral

coding plays an essential role in MI theory and training.

Motivational Interviewing Skill Codes (MISC, Table 2.2) is a framework for coding

MI sessions. It facilitates evaluating therapy sessions via utterance-level labels akin to

dialogue acts [136, 137], and are designed to examine therapist and client behavior in a

therapy session. 5 Table 2.2 shows the distribution, description and examples of MISC

labels for clients and therapists. Each of the MISC labels will be corresponding to a single

utterance. Hence, MISC code prediction is a sentential-anchoring task, mainly capturing

each utterance’s function.

2.2.2.2 Dialogue State Tracking

From the simple GUS [17] to the modern task-based dialogue systems built in virtual

assistants (Alexa, Siri, and Google Assistant et al.), they are all based around frames. Frame

theory is derived from Fillmore’s case theory [16]. A frame is a kind of knowledge structure

representing the kinds of intentions the system can extract from user sentences and consists

of a collection of slots, each of which can take a set of possible values. Together this set of

frames is sometimes called a domain ontology.

As the dialogue goes on, a dialogue state tracker maintains the current state of the

conversation (which includes the user’s most recent dialogue intent, plus the entire set

of slot-filler constraints the user has expressed so far). The dialogue policy decides what

the system should do or say next. Finally, dialogue state systems have a natural language

generation component to reply to the utterance of users.

Figure 1.6 shows a dialogue on restaurant booking service. For each user turn, the

5The original MISC description of Miller et al. [138] included 28 labels (9 client, 19 therapist). Due to data
scarcity and label confusion, various strategies are proposed to merge the labels into a coarser set. We adopt the
grouping proposed by Xiao et al. [139]; Appendix A gives more details.



36

dialogue state tracking predicts the corresponding intent, requested slot, and slot values

for that turn. The intent classification task is to understand what the user is trying to

accomplish in this dialogue utterance; thus, the output intent label is anchored to the

current user utterance. The requested slot is what the user is asking for more information,

while the slot filling task is to extract the particular slots and fillers that the user offered to the

system for more detailed arguments of their intent. The requested slots and slot-filling tasks

can depend on any relevant tokens or phrases in the user utterance; thus, the anchoring is

mixed.

2.2.2.3 Conversational Semantic Representations

Most existing annotations for task-oriented dialogue systems have fallen on the extremes

of nonrecursive intent and slot tagging, such as in the MultiWOZ [19]. Hence, the previous

intent-slot dialogue state representation has poor compositionality to represent complex

conversational requests, such multiple intents in the same utterance, and nested intent slot

structures.

Recently, conversational parsing has attracted much attention to represent the dialogue

state in a more compositional way, such as the the hierarchical tree structure in the Task-

Oriented dialogue Parsing [TOP, 53, 140], [TreeDST, 141], and [Dataflow, 142]. In summary,

those conversation semantic representation offers richer intent slot compositions, and

support complex conversational linguistic phenomena, such as dialogue state revision and

recovering.

In this dissertation, we study the structures of single sentence representation TOP for

dialogue representations. Figure 2.6 shows two examples of the nested structures of TOP

structures. All intents and slots are nonterminal nodes, prefixed with “IN:” or “SL:” labels,

respectively.

The TOP tree structure shares a lot similaries with consituent tree shown in Figure 1.2.

It has the following three structural constraints. (1) The top level node must be an intent.

(2) An intent can have tokens and/or slots as children (3) A slot can have either tokens or

intents as its children.
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2.2.2.4 Summary of Application-Specific Representations

Table 2.3 summarized the application-specific representations studied in our dissertation.

For the application-specific representations on dialogue, we first introduced sentence-level

anchoring representation: dialogue acts, and a specific type of dialogue act for psychother-

apy dialogue called MISC. Then we introduced the frame-based dialogue state tracking, and

we showed that intent classification is also a sentential-anchoring task, while requested slot

and slot filling tasks can be considered as mixed anchoring. Finally, to resolve the limitations

on nonrecursive intent and slot tagging, we briefly introduced a set of conversational

semantic parsing representations. They offer richer intent slot compositions and support

complex conversational linguistic phenomena, such as dialogue state revision and recovery.

In this dissertation, we mainly focused on one of the tree-structural conversational dialogue

representation called TOP, which shares the same phrasal anchoring due to the similar

structure with constituent tree.

2.3 Chapter Summary
In this chapter, we first summarized the recent advances in deep structured prediction

for representational formalism, learning and inference, respectively. For representational

formalism, we introduce graphic model to represent the structural interdependence, and

represent the main assumption of the independent factorization as two factor graphs

in Figure 2.1. Then we overviewed the development of representation learning methods

for natural language, from feature selection to deep learning based on contextualized

representation learning methods. We also reviewed the recent advances of MAP inference

and Marginal Inference in deep learning.

The second part of this section introduces the background of symbolic representation for

natural language, including the broad-coverage meaning representations and application-

specific representations. Instead of studying structured prediction for each linguistic

structured prediction tasks separately, based on independent factorization, we firstly

categorize those symbolic representations according to the anchoring types, summarized

in Section 2.2.1.5 and Section 2.2.2.4. Then based on the background, in the following

chapters, we study the detailed strategies for independent factorization by exploiting the

structural inductive biases and natural language as inductive biases.
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Figure 2.1: The factor representation for the independent factorization used in our
dissertation.
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Figure 2.2: The DM representation for the sentence #20001001.
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join
〈34:38〉

pos VB

frame ev-w1777f1

vinken
〈7:13〉

pos NNP

ACT-arg

board
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pos NNS

RSTR

EXT
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Figure 2.3: The PSD representation for the sentence #20001001.
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join-01

person

ARG0

board

ARG1

date-entity
month 11

day 29

time

name
op1 Pierre

op2 Vinken

name

temporal-quantity
quant 61

age

year

unit

have-org-role-91

(ARG1)-of

ARG0

director

ARG2

executive
polarity -

mod (domain)

Figure 2.4: The AMR representation for the sentence #20001001.
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H

Pierre, Vinken ,

61 years

old

, will join

the board as a nonexecutive

director

Nov., 29 .

C U E

U F P T U A A A

Q C

S T

F C R F E C

A P

Figure 2.5: The UCCA representation for the sentence #20001001.

Figure 2.6: A TOP example for conversational semantic parsing (adapted with permission
from Gupta et al. [53] published under a Creative Commons Attribution 4.0 International
License).

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Table 2.1: The summary of broad-coverage meaning representations, with respect to their
anchoring type and captured semantic contents.

DM PSD AMR UCCA
Anchoring Type Explicit Lexical Explicit Lexical Implicit Lexical Phrasal

Predicate-Argument Yes Yes Yes Yes
Word Sense Yes Yes Yes No

Qualification and Scope Partial No Yes No
Presupposition/Focus No No Yes No
Lexical Decomposition No No Yes No
Anaphoric Coreference No No Partial Partial

Grounding No No Yes No

Table 2.2: Distribution, description and examples of MISC labels.

Code Count Description Examples

Client Behavioral Codes

FN 47715
Follow/ Neutral: unrelated to
changing or sustaining behavior.

“You know, I didn’t smoke for a while.”
“I have smoked for forty years now.”

CT 5099
Utterances about changing un-
healthy behavior.

“I want to stop smoking.”

ST 4378
Utterances about sustaining un-
healthy behavior.

“I really don’t think I smoke too much.”

Therapist Behavioral Codes

FA 17468 Facilitate conversation “Mm Hmm.”; “OK.”;“Tell me more.”
GI 15271 Give information or feedback. “I’m Steve.”; “Yes, alcohol is a depressant.”

RES 6246 Simple reflection about the client’s
most recent utterance.

C: “I didn’t smoke last week.”
T: “Cool, you avoided smoking last week.”

REC 4651
Complex reflection based on a
client’s conversation history.

C: “I didn’t smoke last week.”
T: “You mean things begin to change.”

QUC 5218 Closed question “Did you smoke this week?”
QUO 4509 Open question “Tell me more about your week.”

MIA 3869
MI adherent, e.g., affirmation, advis-
ing with permission, etc.

“You’ve accomplished a difficult task.”
“Is it OK if I suggested something?”

MIN 1019
MI nonadherent, e.g., confront, ad-
vising without permission, etc.

“You hurt the baby’s health for cigarettes?”
“You ask them not to drink at your house.”

Table 2.3: The summarization of the application-specific representations studied in this
dissertation.

MISC Dialogue State Tracking TOP
Application Psychotherapy Task Oriented Task Orientied
Structures Sequence Labelling Intent/Requested Slot/Slot Filling Tree Parsing

Anchoring Type Sentential Mixed Phrasal



CHAPTER 3

STRUCTURAL INDUCTIVE BIASES

FOR PARSING GRAPH-BASED

REPRESENTATIONS

The design and implementation of broad coverage and linguistically motivated meaning

representation frameworks for natural language is attracting growing attention in recent

years. With the advent of deep neural network-based machine learning techniques, we

have made significant progress to automatically parse sentences intro structured meaning

representation [143, 144, 145, 146]. Moreover, the difference between various representation

frameworks has a significant impact on the design and performance of the parsing systems.

Due to the abstract nature of semantics, there is a diverse set of meaning representation

frameworks in the literature [131]. In some application scenarios, tasks-specific formal

representations such as database queries, the arithmetic formula has also been proposed.

However, primarily the study in computational semantics focuses on frameworks that are

theoretically grounded on formal semantic theories, and sometimes also with assumptions

on underlying syntactic structures. In this chapter, we mainly studied parsing graph-

based symbolic representations that inspired by computational semantics, including four

broad-coverage meaning representations (DM [11], PSD [12, 13], AMR Banarescu et al. [8],

UCCA [10]) and an application-specific representation TOP [53]. 1

Anchoring is crucial in graph-based representation parsing. Training a statistical parser

typically starts with a conjectured alignment between tokens (or spans) and the semantic

graph nodes, to help to factorize the supervision of graph structure into nodes and edges.

In this chapter, with evidence from previous research on AMR alignments [48, 123, 129, 130,

147, 148], we propose a uniform handling of three meaning representations (DM, PSD, and

1Adapted with permission from Cao et al. [50] published under a Creative Commons Attribution 4.0
International License.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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AMR) into a new group referred to as the lexical-anchoring representations. It supports

both explicit and implicit anchoring of semantic concepts to tokens. We also studied the

parsing on the other two symbolic representations (UCCA and TOP), belonging to the

group of phrasal-anchoring representations where the semantic concepts are anchored to

phrases as well.

To support the simplified taxonomy, we named our parser as LAPA (Lexical Anchoring

and Phrasal Anchoring). 2 By leveraging the linguistic knowledge about the anchoring

analysis, we proposed two separate models for each anchoring type based on independent

factorization. For lexical anchoring, we proposed a graph-based parsing framework with

a latent-alignment mechanism to support both explicit and implicit lexicon anchoring.

According to official evaluation results, our submission ranked 1st in the AMR subtask, 6th

on PSD, and 7th on DM, respectively, among 16 participating teams. For phrasal anchoring,

we proposed a CKY-based constituent tree parsing algorithm to resolve the anchor in

UCCA and TOP. Our postevaluation submission for MRP 2019 task ranked 5th on UCCA.

Furthermore, we show that the same unified CKY-based model can be easily used to parse

an application-specific dialogue representation TOP, which outperforms several baselines

in TOP parsing.

3.1 Related Work and Anchoring Analysis
In this chapter, we mainly study the parsing of four meaning representations (DM, PSD,

AMR, and UCCA) and an application-specific representation TOP on dialogue parsing.

We have mentioned the anchoring type for each representation according to their brief

introduction in Section 2.2.1. In this section, we will first revisit the anchoring analysis

for them, especially we show the detailed evidence that AMR is implicit lexical anchoring.

Then, we group the five representations into two groups: Lexical Anchoring (DM, PSD,

AMR) and Phrasal Anchoring (UCCA and TOP).

3.1.1 Flavors of Meaning Representation

The 2019 Conference on Computational Language Learning (CoNLL) hosted a shared

task on Cross-Framework Meaning Representation Parsing [MRP 2019, 105], which encour-

2The code is available online at https://github.com/utahnlp/lapa-mrp

https://github.com/utahnlp/lapa-mrp
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age participants in building a parser for five different meaning representations in three

distinct flavors. Flavor-0 includes the DELPH-IN MRS Bilexical Dependencies [DM, 11]

and Prague Semantic Dependencies [PSD, 12, 13]. Both frameworks under this represen-

tation have a syntactic backbone (natively or by proxy) based on bilexical dependency

structures. As a result, the semantic concepts in these meaning representations can be

anchored to the individual lexical units of the sentence. Hence, Flavor-0 is actually explicit

lexical anchoring. Hence, Flavor-0 is lexical anchoring in our dissertation.

Flavor-1 includes Elementary Dependency Structures [EDS, 119] and Universal Concep-

tual Cognitive Annotation framework [UCCA, 10], which shows an explicit, many-to-many

anchoring of semantic concepts onto substrings of the underlying sentence. In this disserta-

tion, we consider UCCA with another application-specific symbolic representation TOP,

where the underlying substrings mainly form a tree-like structure. 3 We grouped UCCA

and TOP as phrasal anchoring.

Finally, Flavor-2 includes Abstract Meaning Representation [AMR, 8], which is de-

signed to abstract the meaning representation away from its surface token. But it leaves

open the question of how these are derived. In the following part, we mainly analyze the

detailed anchoring analysis of AMR.

3.1.2 Anchoring Analysis for AMR

Previous studies have shown that the nodes in AMR graphs are predominantly aligned

with the surface lexical units, although explicit anchoring is absent from the AMR repre-

sentation. In this section, we review the related work supporting the claim of the implicit

anchoring in AMR is actually lexical anchoring, which can be merged into Flavor-0 when

we consider the parsing methods on it.

3.1.2.1 AMR-to-String Alignments

A straightforward solution to find the missing anchoring in an AMR Graph is to align

it with a sentence; We denote it as AMR-to-String alignment. ISI alignments [129] first

linearizes the AMR graph into a sequence, and then use IBM word alignment model [149]

to align the linearized sequence of concepts and relations with tokens in the sentence.

3We leave the parsing of EDS as future work.
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According to the AMR annotation guidelines and error analysis of ISI aligner, some of the

nodes or relations are evoked by subwords, e.g., the whole graph fragment “(p/possible-01

:polarity -)” is evoked by word “impossible", where the subword “im” actually evoked the

relation polarity and concept “-”; On the other side, sometimes concepts are evoked by

multiple words, e.g., named entities, “(c/city :name (n/name :op1 ‘New’ :op2 ‘York’)),” which

also happens in explict anchoring of DM and PSD. Hence, aligning and parsing with

recategorized graph fragments are a natural solution in aligners and parsers. JAMR

aligner [123] uses a set of rules to greedily align single tokens, special entities and a set of

multiple word expression to AMR graph fragments, which is widely used in previous AMR

parsers [e.g., 48, 123, 124, 125, 126, 127, 128]. Other AMR-to-String Alignments exists, such

as the extended HMM-based aligner. To consider more structure info in the linearized AMR

concepts, Wang and Xue [48] proposed a Hidden Markov Model (HMM)-based alignment

method with a novel graph distance. All of them report over 90% F-score on their own

hand-aligned datasets, which shows that AMR-to-String alignments are almost token-level

anchoring.

3.1.2.2 AMR-to-Dependency Alignments

Chen and Palmer [130] first tries to align an AMR graph with a syntactic dependency

tree. Szubert et al. [147] conducted further analysis on dependency tree and AMR interface.

It showed 97% of AMR edges can be evoked by words or the syntactic dependency edges

between words. Those nodes in the dependency graph are anchored to each lexical token

in the original sentence. Hence, this observation indirectly shows that AMR nodes can be

aligned to the lexical tokens in the sentence.

Both AMR-to-String and AMR-to-dependency alignments shows that AMR nodes,

including recategorized AMR graph fragements, do have implicit lexical anchoring. Based

on this, Lyu and Titov [148] propose to treat token-node alignments as discrete and exclusive

alignment matrix and learn the latent alignment jointly with parsing. Recently, attention-

based seq2graph model also achieved the state-of-the-art accuracy on AMR parsing [150].

However, whether the attention weights can be explained as AMR alignments needs more

investigation in future.



47

3.1.2.3 Summary of Anchoring Analysis

According to the above factorization analysis, we group the broad-coverage meaning rep-

resentations (DM, PSD, AMR, UCCA) and the conversational semantic representation (TOP)

into the following three categories.

• Explicit lexical anchoring: DM and PSD. As discussed in the background section

about symbolic representations (Section 2.2.1.1 and Section 2.2.1.2), DM and PSD aim

to represent all the semantic dependencies between words, fully covering the sentence.

For each node in the graph, there will be an explicit words and multiword expressions

aligning to it. Hence, we call such kind of lexical anchoring explicit lexical anchoring.

• Implicit lexical anchoring: AMR. AMR tries to abstract the meaning representation

away from the surface token. The absence of explicit anchoring can present difficulties

for parsing. However, through extensive anchoring analysis on AMR alignments, we

show that AMR nodes can be implicitly aligned to the lexical tokens or special entities

in a sentence. Hence, we mainly consider the lexical-level input decomposition for

AMR.

• Phrasal anchoring: UCCA and TOP. According to the MRP shared task and the

background on UCCA (Section 2.2.1.4) and TOP (Section 2.2.2.3), nonterminal nodes

in UCCA and TOP are aligned to phrases in a sentence. Hence, we need to consider

phrase-level input decomposition for them.

3.2 Lexical Anchoring: Latent Alignment
Model for Graph-Based Parsing

In this section, we will first introduce the two-stage framework for parsing the DM,

PSD, and AMR graphs (Section 3.2.2). Then we resolve the alignment problem with a latent

alignment model (Section 3.2.3)

According to the linguistic analysis on anchoring, we have shown that DM, PSD and

AMR belong to the lexical-anchoring representations, which indicates that their nodes in the

output graph are explicitly or implicitly anchored to the lexical units of the corresponding

input sentence. Before showing the unified design of independent factorization, let us

introduce the fundamental concepts and notations.
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We refer to words in a sentence as x = (x0; x1; ...xi; ...; xn), where n is the sentence length.

For all the graph-based representations in our lexical-anchoring category, we decompose

the whole graph into nodes and edges. We denotes the labelled nodes (concepts) as

C = {ci | i ∈ [0, m]}, where m is the number of concepts. While the labelled edges (relations)

between the m concepts are denoted as R = {rij | i ∈ [0, m], j ∈ [0, m]}. rij means the

directional relation from the node i to the node j. We use rij = Φ to indicate no edge from

the node i to the node j.

In this part, based on the above notations, we introduce how to do independent

factorization on lexical-anchoring representations by addressing the three main chellenges

in output decomposition (Section 3.2.1.1), input decomposition and alignments Discov-

ery (Section 3.2.1.2), and factor modelling (two-stage parsing (Section 3.2.2 and latent

alignment model Section 3.2.3).

3.2.1 Independent Factorization on Lexical Anchoring

In the following, we focus on the first two main challenges in independent factorization:

output decomposition and input decomposition on lexical-anchoring representations. We

leave the factor modelling into the next part. We take a more complicated AMR graph

in Figure 2.4 as an example, for the sentence, Pierre Vinken, 61 years old, will join the board as a

nonexecutive director Nov.29. We introduce the details of independent factorization for AMR

and other lexical-anchoring representations.

3.2.1.1 Output Decomposition

For the lexical-anchoring graph-based representations (DM, PSD, AMR), the target

graph can be decomposed into independent nodes or subgraphs. For DM and PSD, each

node in the target graph is strictly aligned to the corresponding token. Hence, we simply

decompose the DM and PSD graph by nodes. However, when we introduce the necessary

of structural inductive biases for independent factorization (Section 1.1.3.3), the AMR

parsing running examples shows that we need to handle those special entities in AMR

graph. From the training data alone, we cannot easily tell how to segment the AMR

graphs. However, according to the annotation guideline of AMR and previous work on

subgraph templating [46] or abstract concept label [48], the main intuition of grouping is

to ensure that concepts are rarely lexically triggered (e.g., “person” and “have-org-role-91”
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in Figure 2.4 get grouped together with lexically triggered nodes (e.g., “Pierre Vinken” and

“director”). Finally, we adopt the templates proposed by Lyu and Titov [148] including:

thing (e.g., “(opine-01 :ARG-01 thing)” for “opinion”), person (e.g., “(play-01 :ARG1 person)”

for “player”), more, most (e.g., “(have-degree-91 :ARG2 good-02) :ARG3 more)” for “better”),

date-entity (e.g., “(date-entity :month 2)” for “February”), and all the special quantity entities,

xx-quantity (e.g., “(monetary-quantity :quant 20 :unit dollar)” for “$20”). 4 AMR output

decomposition will be the rectangled segments shown in Figure 3.1.

3.2.1.2 Input Decomposition and Alignments Discovery

According to the bilexical dependency structures of DM and PSD, and implicit lexical

token anchoring on AMR, the nodes or categorized graph fragments in DM, PSD, and AMR

are anchored to surface lexical units in an explicit or implicit way. Especially, those lexical

units do not overlap with each other, and most of them are just single-tokens, multiple

word expression, or named entities. In other words, when parsing a sentence into DM, PSD,

AMR graphs, and tokens in the original sentence can be merged by looking up a lexicon dict

when preprocessing and then may be considered as a single token for aligning or parsing.

The more difficult challenge exists in how to align the decomposed input with the

decomposed output. According to the previous anchoring analysis, the training data of DM

and PSD naturally contains the anchoring information, while the AMR training data doesn’t

offer the alignments. Hence, for AMR, we need to an extra model to resolve the alignments

discovery problem. According to the AMR annotation guideline, a strong inductive bias

about the alignment is that each token or expressive is not overlapping and is exclusively aligned

to the output decompositions. We will introduce the details of the latent alignment model in

Section 3.2.3.

3.2.2 Two-Stage Graph-Based Parsing

Before formulating the graph-based model into a probabilistic model as Equation 3.1,

we denote some notations: C, R are sets of concepts (nodes) and relations (edges) in the

graph, and w is a sequence of tokens. a ∈ Zm as the alignment matrix, each ai is the index

of aligned token where ith node aligned to. When modeling the negative log likelihood

4Please refer to the paper of Lyu and Titov [148] for more details about the recategorization.
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loss (NLL), with independence assumption between each node and edge, we decompose it

into node- and edge-identification pipelines.

NLL(P(C, R | w))

= − log(P(C, R | w))

= − log(∑
a

P(a)P(C, R | w, a))

= − log

(
∑

a
P(a)P(C | w, a)P(R | w, a, C)

)

= − log

(
∑

a
P(a)

m

∏
i

P(ci | hai) ·
m

∏
i,j=1

P(rij | hai , ci, haj , cj)

)
(3.1)

Hence, we train a joint model to maximize the above probability for both node identifi-

cation P(ci | hai) (Section 3.2.2.1) and edge identification P(rij | hai ,ci ,haj ,cj) (Section 3.2.2.2).

The alignment information is mainly used for training. We need to marginalize out the

discrete alignment variable a to jointly learning the parameters in node identification

and relation identification networks. In DM, PSD, and AMR, every token will only be

aligned once. We know the exact alignment information in DM and PSD, while we don’t

have the alignment information for AMR for training. Hence, we introduce the latent

alignment model in Section 3.2.3 to resolve the learning with discrete latent alignment

variable. Figure 3.2 summerize the unifed two-stage graph based parsing framework. In

the following subsections, we will explain the framework in more details.

3.2.2.1 Node Identification

The stage of node identification predicts a concept c given a word. A concept can

be either “Φ” (when there is no semantic node anchoring to that word, e.g., the word is

dropped), or a node label (e.g., lemma, sense, POS, name value in AMR, frame value in

PSD), or other node properties. One challenge in node identification is the data sparsity

issue. Many of the labels are from open sets derived from the input token, e.g., its lemma.

Moreover, some labels are constrained by a deterministic label set given the word. Hence, we

propose to use copy mechanism [151] in our neural network architecture to decide whether

to copy the deterministic label given a word or directly estimate a classification probability

from a fixed label set. As the first stage shown in Figure 3.2, each token will output its

corresponding node. Here, the two article “The,” “the” and final period will produce “Φ”
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node. While other tokens will copy themself and transform to the corresponding lemma,

frames, or other formations.

3.2.2.2 Edge Identification

By assuming the independence of each edge, we model the edges probabilites inde-

pendently. Given two nodes and their underlying tokens, we predict the edge label as the

semantic relation between the two concepts with a biaffine classifier [152]. As the stage 2

shown in Figure 3.2, the model will predict all the edges between the n nodes produced

in the node identification stage, thus n ∗ n edges. For each edge, it will be classified into r

labels and forms a cube as n ∗ n ∗ r. The r edge labels include “:COREF” and “:NULL” labels.

“:COREF” indicates that the two nodes belongs to the same entity, while “:NULL” indicates

no relation between the two nodes.

3.2.2.3 Inference

In our two-stage graph-based parsing, after nodes are identified, edge identification only

output a probility distribution over all the relations between identified nodes. However, we

need to an inference algorithm to search for the maximum spanning connected graph (MSCG)

from all the relations. We use MSCG [123] to greedily select the most valuable edges

from the identified nodes and their relations connecting them. As shown in Figure 3.2, an

input sentence goes through preprocessing, node identification, edge identification, root

identification, and MSCG to generate a final connected graph as structured output. Finally,

a postprocessing stage will produce a valid graph according to the corresponding format of

DM, PSD, AMR.

3.2.3 Latent Alignment Model

As the two-stage probablistic model shown in Equation 3.1, we need to marginalize all

the alignment information a to learn the above two-stage nerual networks for node and

edge identification. We do the following computing for explicit and implicit alignments,

respectively.

• Explicit Alignments: For DM, PSD, with explicit alignments a∗, we can simply

use P(a∗) = 1.0 and other alignments P(a|a ̸= a∗) = 0.0. Hence, in this case, with

known alignment information, we don’t need to worry the intractable marginalization
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problem. Further more, after reducing the latent alignment variable, we can easily

learn the parameters for models of node identifiaction and edge identification.

• Implicit Alignments: However, For AMR, without gold alignments, one requires to

compute all the valid alignments and then condition the node- and edge-identification

methods on the alignments. However, it is computationally intractable to enumerate

all combinatoral values for the discrete alignment variable. Hence, we estimate the

latent alignments via variational inferece, which has been initialially used in Lyu and

Titov [148]. In the following section, we introduce the details of latent alignment

model via variational inference (Section 3.2.3.1), Perturb-and-Max (Section 3.2.3.2),

Gumbel-Sinkhorn networks (Section 3.2.3.3).

Hence, with the alignment models for both explicit and implicit alignments, our unified

two-stage parsing framework can support the parsing on DM, PSD and AMR.

3.2.3.1 Variational Inference

First, as shown in Equation 3.2, latent alignment prior P(a) is unknown for the two-stage

parsing. We want estimate the latent alignment model to ensure that it is consistent

with the obversed w, C, and R. Furthermore, we also need to marginal it out and jointly

learn the parameters θ and Φ to generate the concepts and relations, respectively. Hence,

we apply variational inferenc to reduce the marginal likelihood into Evidence Lower

Bound (ELBO) [153].

log(P(C, R | w))

= log

(
∑

a
P(a)P(C | w, a)P(R | w, a, C)

)
≥ EQ[log(Pθ(C | w, a)PΦ(R | w, a, C))]− DKL(QΨ(a | C, R, w) || P(a))

= ∑
a

QΨ(a | C, R, w) log(Pθ(C | w, a)PΦ(R | w, a, C))]

− DKL(QΨ(a | C, R, w) || P(a))

(3.2)

where QΨ(a|c, R, w) is the alignment model, parameterized by a nerual network Ψ to

approximate the intractable posterior alignment model Pθ,Φ(a | C, R, w). The second

term DKL is the Kullback-Leibler divergence [154], measuring the difference between the

approximated posterior and the true posterior. Please refer to the original variational

auto-encoder paper [153] for more details.
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3.2.3.2 Perturb-and-Map

To jointly learn the models according the Equation 3.2, the posterior alignment model Q

can be computed as shown in Equation 3.3.

QΨ(a | c, R, w) =
exp(∑n

i=1 ϕ(gi, hai))

ZΨ(c, w)
(3.3)

where ϕ(gi, hai) score each alignment link between node i and the corresponding words, gi

is node encoding, and hai is encoding for the aligned token. However, the denominator ZΨ

is an intratable partition fuction for the global normalization, which has n! combinations.

Perturb-and-Max(MAP) techinique [51] can help this intratable sampling with the following

two steps:

• Perturbing the alignment score (ϕ(gi, hai)) with an independent noise.

• Computing the argmax to sample the discrete alignment variable a.

3.2.3.3 Gumbel Sinkhorn

Finally, the remaining challenge lies in the discrete argmax in the second step of Perturb-

and-Max, which is not differtiable. Mena et al. [52] resolve this issue with a simple differen-

tiable operator called Gumbel-Sinkhorn operator. As the exlcusive alignment assumption

when we introduce the input decomposition of lexical-anchoring parsing (Section 3.2.1.2),

the argmax over exclusive alignment can be relaxiated into a differentiable gumbel softmax

over n ∗ n matrix scores. For further details of the estimated posterior alignment model, we

refer the reader to the original paper [52, 148].

3.3 Phrasal Anchoring: Minimal Span-Based
CKY Parsing

Let us now see our phrasal-anchoring parser for UCCA and TOP. We introduce the

transformation (Section 3.3.1) used to reduce UCCA and TOP parsing into a unified

constituent tree parsing task. Then based on the above transformation, we introduce

how to do independent factorization on phrasal-anchoring representations by addressing

the three main challenges in output decomposition (Section 3.3.2.1), input decomposi-

tion and alignments discovery (Section 3.3.2.2), and factor modelling, including CKY

parsing (Section 3.3.3) and span representation (Section 3.3.4).
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3.3.1 Graph to Constituent Tree Transformation

Nodes in UCCA do not have node labels or node properties, but all the nodes are

anchored to the spans of the underlying sentence. However, to have a unifed representation

with previous lexical anchoring, we do the following transformation to form a constituent

tree for UCCA, where every node has a label, which is suitable for the independent

facrtorization to map each input decompositions into the output nodes.

3.3.1.1 UCCA to Consistuent Tree Transformation

We propose to transform a graph into a constituent tree structure for parsing, which

is also used in recent work [155]. Figure 3.3 shows an example of transforming a UCCA

graph into a constituent tree. The primary transformation assigns the original label of an

edge to its child node. Then to make it compatible with parsers for standard PennTree

Bank format, we add some auxiliary nodes such as special nonterminal nodes, TOP, HEAD,

and special terminal nodes TOKEN and MWE. We remove all the “remote” annotation in

UCCA since the constituent tree structure does not support reentrance. A fully compatible

transformation should support both graph-to-tree and tree-to-graph transformation.

In our case, to simplify the model, we remove those remote edges and reentrance edges

during training. Besides that, we also noticed that for multiword expressions, the children

of a parent node might not be in a continuous span (e.g., discontinuous constituent), which

is also not supported by our constituent tree parser. Hence, when training the tree parser,

by reattaching the discontinuous tokens to its nearest continuous parent nodes, we force

every sub span are continuous in the transformed trees. We leave the postprocessing to

recover those discontinuous as future work.

For inference, given an input sentence, we first use the trained constituent tree parsing

model to parse it into a tree, and then we transform a tree back into a directed graph by

assigning the edge label as its child’s node label, and deleting those auxiliary labels, adding

anchors to every remaining node.

3.3.1.2 TOP to Consistuent Tree

For the hierarchical dialogue representation TOP, we also can tranform it to a constituent

tree structure. Figure 3.4 shows the transformation process for the utterance “Driving

directions to the Eagles game". In TOP tree shown in the up side of the figure, the leaf nodes
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are not single words as in consituent tree, and there are no other nonterminal nodes (such

as part-of-speech tags) other than the intents and slots nodes. Hence, we decompose the

original teriminal nodes in TOP into seperate tokens, and add a special parent node as TOK

to each of the ternimal token node. Finally, it forms the constituent tree as shown in the

bottom.

3.3.2 Independent Factorization on Phrasal Anchoring

In the following, we focus on the first two main challenge in independent factorization:

output decomposition and input decomposition on phrasal-anchoring parsing. We leave

the factor modelling into the next part. We consider the same sentence example “Pierre

Vinken, 61 years old, will join the board as a nonexecutive director Nov.29.” and its

corresponding UCCA graph as shown in Figure 2.5. We introduce the details of independent

factorization for UCCA and other pharsal-anchoring representations.

3.3.2.1 Output Decomposition

After the above transformation, as shown in the Figure 3.5 the labelled nodes in UCCA

are linked into a hierarchical structure, with edges going between parent and child nodes.

With certain exceptions (e.g., remote edges, the dashed line to the node “:A” with a second

parent of node “director”), the majority of the UCCA graphs are tree-like structures. In this

disseration, because the remote edge are rare, we ignore all the exception to simplfy the

modeling. According to the position as well as the anchoring style, nodes in UCCA can

naturally classified into the following two types:

1. Terminal nodes are the leaf semantic concepts anchored to individual lexical units in

the sentence

2. Nonterminal nodes are usually anchored to a span with more than one lexical units,

thus usually overlapped with the anchoring of terminal nodes.

Hence, it is natural that we can decompose the transformed UCCA tree into two set

of nodes, both of them can be produced from the corresponding lexical units or phrases.

However, more challenges exists on how to generate the input segments that can produce

those output decompostions.
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3.3.2.2 Input Decomposition and Alignments Discovery

Different from the lexical anchoring without overlapping, UCCA may align to larger

overlapped word spans which involves syntactic or semantic pharsal structure. Further

mode, the phrasal decomposition and the alignment model is provided in training data.

However, we have no idea on how to factorize the input during inference.

In lexical anchoring, the input decomposition are handled with a rule-based preprocess-

ing step. However, there is no clear rules how to decompose a sentence into a structure

similar with consistuent tree structure. Luckily, we have many previous studies on how

to parse a sentence into a constituent tree, which inspired us that we can model the input

decomposition jointly with the factor modelling part. We leave more details of the model

for joint input decomposition and factor modeling in Section 3.3.3.

3.3.3 A Unified Span-Based Model for CKY Parsing

After transforming the UCCA graph into a constituent tree, we reduce the UCCA parsing

into a constituent tree parsing problem. Similar to the previous work on UCCA constituent

tree parsing [155], we use a minimal span-based CKY parser for constituent tree parsing.

The intuition is to use dynamic programming to recursively split the span of a sentence

recursively, as shown in Figure 3.3. The entire sentence can be splitted from top to bottom

until each span is a single unsplittable tokens. For each node, we also need to assign a

label. Two simplified assumptions are made when predicting the hole tree given a sentence.

However, different with previous work, we use 8-layers with 8 heads transformer encoder,

which shows better performance than LSTM in Kitaev and Klein [156].

3.3.3.1 Tree Factorization

In the graph-to-tree transformation, we move the edge label to its child node. By

assuming the labels for each node are independent, we factorize the tree structure prediction

as independent span-label prediction as Equation 3.4. However, this assumption does not

hold for UCCA. Please see more error analysis in Section 3.4.5

T∗ = arg max
T

s(T)

s(T) = ∑
(i,j,l)∈T

s(i, j, l) (3.4)
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3.3.3.2 CKY Parsing

By assuming the label prediction is independent of the splitting point, we can further

factorize the whole tree as the following dynamic programming in Equation 3.5.

sbest(i, i + 1) = max
l

s(i, i + 1, l)

sbest(i, j) = max
l

s(i, j, l)

+ max
k

[sbest(i, k) + sbest(k, j)]

(3.5)

3.3.4 Span Encoding

For each span (i, j), we represent the span encoding vector v(i,j) = [y⃗j − y⃗i]⊕ [ ⃗yj+1 − ⃗yi+1].

Here, ⊕ denotes vector concatenation. Assuming a bidirectional sentence encoder, we use

the forward and backward encodings y⃗i and ⃗yi of ith word. Following the previous work,

and we also use the loss augmented inference training. More details about the network

architecture are in Section 3.4.3.

3.4 Experiments and Results
This section will first introduce the dataset and the evaluation used in our experimental

study (Section 3.4.1). Then we summarize the implementation details when using our

proposed frameworks for each parsing task (Section 3.4.2), with respect to the modeling

on root, node, and edge. Then we introduce the model setup (Section 3.4.3), including

sentence encoders, embedding usage, and training strategies. Finally, we demonstrate

the experimental results with both the evaluation results (Section 3.4.4) and detailed error

analysis (Section 3.4.5).

3.4.1 Dataset and Evaluation

For DM, PSD, we split the training set by taking WSJ section (00-19) as training, and

section 20 as dev set. For other datasets, when developing and parameter tuning, we use

splits with a ratio of 25:1:1. In our submitted model, we did not use multitask learning for

training. Following the unified MRP metrics in the shared tasks, we train our model based

on the development set and finally evaluate on the private test set. For more details of the

metrics, please refer to the summarization of the MRP 2019 task [105],
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3.4.2 Summary of Implementation

We summarize our implementation for lexical-anchoring parsing in Table 3.1, and

phrasal-anchoring parsing in Table 3.2. As we mentioned in the previous sections, we

use latent-alignment graph-based parsing for lexical-anchoring rerepsentations (DM, PSD,

AMR), and use CKY-based constituent parsing phrasal anchoring rerepsentations (UCCA,

TOP). This section gives information about various decision for our models.

3.4.2.1 Root

The first row “Root” shows the numbers of root nodes in the graph. We can see that for

PSD, 11.56% of graphs with more than 1 top nodes. In our system, we predict one and only

one root node with a N (N is size of already identified nodes) way classifier, and then fix

this with a postprocessing strategy. When our model predicts one node as the root node,

and if we find additional coordination nodes with it, we add the coordination node also as

the top node.

3.4.2.2 Node

Except for UCCA, all other four representations have labeled nodes, the row “Node

Label” shows the templates of a node label. For DM and PSD, the node label is usually

the lemma of its underlying token. But the lemma is neither the same as one in the given

companion data nor the predicted by Stanford Lemma Annotators. One common challenge

for predicting the node labels is the open label set problem. Usually, the lemma is one of the

morphology derivations of the original word. But the derivation rule is not easy to create

manually. In our experiment, we found that handcrafted rules for lemma prediction only

works worse than classification with copy mechanism, except for DM.

For AMR, there are other components in the node labels beyond the lemma. Especially,

the node label for AMR also contains more than 143 fine-grained named entity types. In

addition to the node label, the properties of the label also need to be predicted. Among

them, node properties of DM are from the sense and argument handlers in Semantic

Interface [SEM-I, 120]), while for PSD, senses are constrained the senses in the predefined

the vallex lexicon.
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3.4.2.3 Edge

Edge predication is another challenge in our task because of its large label set (from 45 to

94) as shown in row “Edge Label,” the round bracket means the number of output classes of

our classifiers. For lexical-anchoring representations, edges are usually connected between

two tokens, while phrasal-anchoring needs extra effort to figure out the corresponding span

with that node. For example, in UCCA parsing, to predict edge labels, we first predicted the

node spans, and then predict the node label based on each span, and finally we transform

back the node label into edge label.

3.4.2.4 Connectivity

Beside the local label classification for nodes and edges, there are other global structure

constraints for all five representations: All the nodes and edges should eventually form a

connected graph. For lexical anchoring, we use MSCG algorithm to find the maximum con-

nected graph greedily; For phrasal anchoring, we use dynamic programming to decoding

the constituent tree then deterministically transforming back to a connected UCCA Graph.

We ignored all the discontinuous span and remote edges in UCCA.

3.4.3 Model Setup

For lexical-anchoring model setup, our network mainly consists of node and edge

prediction model. For AMR, DM, and PSD, they all use one layer Bidirectional LSTM

for input sentence encoder, and two layers Bidirectional LSTM for head or dependent

node encoder in the biaffine classifier. For every sentence encoder, it takes a sequence

of word embedding as input (We use 300 dimension Glove here), and then their output

will pass a softmax layer to predicting output distribution. For the latent AMR model, to

model the posterior alignment, we use another BiLSTM for node sequence encoding. For

phrasal-anchoring model setup, we follow the original model set up in Kitaev and Klein

[156], and we use 8-layers 8-headers transformer with position encoding to encode the

input sentence.

For all sentence encoders, we also use the character-level CNN model as character-level

embedding without any pretrained deep contextualized embedding model. Equipping our

model with Bert or multitask learning is promising to get further improvement. We leave

this as our future work.
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Our models are trained with Adam [157], using a batch size 64 for a graph-based model,

and 250 for CKY-based model. Hyper-parameters were tuned on the development set,

based on labeled F1 between two graphs. We exploit early-stopping to avoid overfitting.

3.4.4 Results

At the time of official evaluation in MRP’2019 shared task, we submitted the unified

lexical anchoring parser for DM, PSD and AMR, and then we submitted another phrasal-

anchoring model for UCCA parsing during postevaluation stage, and we leave EDS parsing

as future work. The following sections are the official results and error breakdowns for

lexical anchoring and phrasal anchoring, respectively. For the results of TOP Parsing, we

use a seperate table for it.

3.4.4.1 Official Results on Lexical Anchoring

Table 3.3 shows the official results for our lexical-anchoring models on AMR, DM, PSD.

By using our latent alignment based AMR parser, our system ranked top 1 in the AMR

subtask, and outperformed the top 5 models in large margin. However, the official results on

DM and PSD shows that there is still around 2.5 points performance gap between our model

and the top 1 model. Our submitted parser ranked 6th on PSD and 7th on DM. Extensive

error analysis shows that our parser perform worse on the root and edge prediction. Please

refer to more details in Section 3.4.5.1.

3.4.4.2 Official Results on Phrasal Anchoring (UCCA)

Table 3.4 shows that our span-based CKY model for UCCA can achieve 74.00 F1 score

on official test set, and ranked 5th. When adding ELMo [68] into our model, it can further

improve almost 3 points on it. However, it still performs 4 points worse than the top 1

model from [158], which realize stack LSTM with more advanced contextualized word

embeddings BERT [39]. We also conduct extensive error analysis in Section 3.4.5.2.

3.4.4.3 Results on Phrasal Anchoring (TOP)

Table 3.5 shows the results on TOP parsing. We use our CKY model skeleton but

with different underlying contextualized span representation from ELMo, Roberta, and

SpanBERT. Below the line are the baseline models for TOP parsing. Our plain model
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with glove-based transformer model can outperform all the previous baseline models.

Contualized presentation from pretrained language model can boost the performance

further.

3.4.5 Error Breakdown

Tables 3.6, 3.7, 3.8 and 3.9 shows the detailed error breakdown of AMR, DM, PSD and

UCCA, respectively. Each column in the table shows the F1 score of each subcomponent in

a graph: top nodes, node lables, node properties, node anchors, edge labels, and overall F1

score. No anchors for AMR, and no node label and propertis for UCCA. We show the results

of MRP metric on two datasets. “all" denotes all the examples for that specific MR, while

lpps are a set of 100 sentences from The Little Prince, and annotated in all five meaning

representations. To better understand the performance, we also reported the official results

from two baseline models TUPA [159] and ERG [160].

3.4.5.1 Error Analysis on Lexical Anchoring

As shown in Table 3.6, our AMR parser is good at predicting node properties and

consistently perform better than other models in all subcomponent, except for top prediction.

Node properties in AMR are usually named entities, negation, and some other quantity

entities. In our system, we recategorize the graph fragements into a single node, which helps

for both alignments and structured inference for those special graph fragments. We see that

all our 3 models perform almost as good as the top 1 model of each subtask on node label

prediction, but they perform worse on top and edge prediction. It indicates that our biaffine

relation classifier are main bottleneck to improve. Moreover, we found the performance gap

between node labels and node anchors are almost consistent, it indicates that improving

our model on predicting NULL nodes may further improve node label prediction as well.

Moreover, we believe that multitask learning and pretrained deep models such as BERT [39]

may also boost the performance of our paser in future.

3.4.5.2 Error Analysis on Phrasal Anchoring

Our UCCA parser in postevaluation ranked 5th according to the original official evalua-

tion results. According to Table 3.9, our model with ELMo works slightly better than the

top 1 model on anchors prediction. It means our model is good at predicting the nodes in
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UCCA and we belive that it is also helpful for prediction phrasal anchoring nodes in EDS.

However, when predicting the edge and edge attributes, our model performs 7-8 points

worse than the top 1 model. In UCCA, an edge label means the relation between a parent

nodes and its children. In our UCCA transformation, we assign edge label as the node

label of its child and then predict with only child span encoding. Thus it actually misses

important information from the parent node. Hence, in future, more improvement can be

done to use both child and parent span encoding for label prediction, or even using another

span-based biaffine classifier for edge prediction, or remote edge recovering.

3.5 Chapter Summary
In summary, by analyzing the AMR alignments, we show that implicit AMR anchoring

is actually lexical anchoring, where each output node can implict be aligned to a token or

entity in the input sentence. Thus we propose to regroup five representations as two groups:

lexical anchoring (DM,PSD,AMR) and phrasal anchoring (UCCA,TOP). Furthermore, based

on the assumption of independent factorization and the structural inductive biases about

different anchoring-types, we proposed two parsing framework to support lexical anchoring

and phrasal anchoring, respectively. For lexical anchoring, we suggest to parse DM, PSD,

and AMR in a unified parsing framework based on latent alignment model, which supports

both explicit lexical anchoring and implicit lexical anchoring. Our submission ranked

top 1 in AMR subtask, ranked 6th and 7th in PSD and DM tasks. For phrasal anchoring,

by reducing UCCA and TOP graph into constituent tree structures, and we use the same

span-based CKY parser to predict their diverse tree structures. Our phrasal-anchoring

parser ranked 5th in UCCA official postevaluation stage, and outperform serveral baselines

on TOP parsing.
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Figure 3.1: AMR output decomposition for the sentence #20001001.
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Figure 3.2: Two-stage graph-based parsing for the running exmaple [wsj#0209013].
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Figure 3.3: UCCA to constituent tree transformation for [wsj#0209013].
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Figure 3.4: TOP to constituent tree transformation for the utterance “Driving directions to
the Eagles game.”

Figure 3.5: UCCA decomposition for the sentence #20001001.
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Table 3.1: The detailed lex-anchoring classifiers in our model. The round bracket means the
number of ouput classes of our classifiers, * means copy mechanism is used in our classifier.

Lexicon Anchoring
DM PSD AMR

Root 1 ≥ 1 (11.56%) 1
Node Label Lemma Lemma(*) Lemma(*) + NeType(143+)

Node Properties POS POS constant values
SEM-I(160*)_args(25) wordid_sense(25) polarity, Named entity

Edge Label (45) (91) (94+)
Edge Properties N/A N/A N/A
Connectivity True True True
Training Data 35656 35656 57885
Test Data 3269 3269 1998

Table 3.2: The detailed lex-anchoring classifiers in our model. The round bracket means the
number of ouput classes of our classifiers, * means copy mechanism is used in our classifier.

Phrase Anchoring
UCCA TOP

Root 1 1
Node Label N/A Intent(25), Slot(36)

Node Properties
N/A N/A
N/A N/A

Edge Label (15) N/A
Edge Properties “remote" N/A
Connectivity True True
Training Data 6485 35741
Test Data 1131 9042

Table 3.3: Official results overview on unified MRP metric. We selected the performance
from top 1/3/5 system(s) for comparison.

MR Ours (P/R/F1) Top 1/3/5 (F1)
AMR(1) 75/71/73.38 73.38/71.97/71.72
PSD(6) 89/89/88.75 90.76/89.91/88.77
DM(7) 93/92/92.14 94.76/94.32/93.74
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Table 3.4: Official results overview on unified MRP metric. We selected the performance
from top 1/3/5 system(s) for comparison. It shows our UCCA model for postevluation can
rank 5th.

MR Ours (P/R/F1) Top 1/3/5 (F1)
UCCA(5) 80.83/73.42/76.94 81.67/77.80/73.22

Table 3.5: Results on TOP parsing.

Model Exact Match P R F1
Ours 80.85 92.77 91.05 91.9

Ours + ELMo 83.04 93.57 92.37 92.97
Ours + Roberta 85.89 96.07 93.08 94.92

Ours + SpanBERT 85.82 95.55 94.44 94.99
RNNG 78.51 90.62 89.84 90.23

Seq2Seq-CNN 75.87 89.25 87.88 88.56
Seq2Seq-LSTM 75.31 88.35 87.03 87.69

Seq2Seq-Transformer 72.2 87.09 86.11 86.6

Table 3.6: Our parser on AMR ranked 1st. This table shows the error breakdown when
comparing to the baseline TUPA model and top 2 [158] in official results.

data tops labels prop edges all
TUPA
sin-
gle

all 63.95 57.20 22.31 36.41 44.73
lpps 71.96 55.52 26.42 36.38 47.04

TUPA
multi

all 61.30 39.80 27.70 27.35 33.75
lpps 72.63 50.11 20.25 33.12 43.38

Ours(1)
all 65.92 82.86 77.26 63.57 73.38

lpps 72.00 78.71 58.93 63.96 71.11

Top 2
all 78.15 82.51 71.33 63.21 72.94

lpps 83.00 76.24 51.79 60.43 69.03

Table 3.7: Our parser on DM ranked 7th. This table shows the error breakdown when
comparing to the model ranked Top 1 [161] in official results.

data tops labels prop anchors edges all

ERG
all 91.83 98.22 95.25 98.82 90.76 95.65

lpps 95.00 97.32 97.75 99.46 92.71 97.03

Top 1
all 93.23 94.14 94.83 98.40 91.55 94.76

lpps 96.48 91.85 94.36 99.04 93.28 94.64

Ours(7)
all 70.95 93.96 92.13 97.25 86.45 92.14

lpps 84.00 90.55 91.91 97.96 87.24 91.82
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Table 3.8: Our parser on PSD ranked 6th. This table shows the error breakdown when
comparing to the model ranked top 1 [162] in official results.

data tops labels prop anchors edges all

Top 1
all 93.45 94.68 91.78 98.35 77.79 90.76

lpps 93.33 91.73 84.37 98.40 77.63 88.34

Ours(6)
all 82.01 94.18 91.28 96.94 72.40 88.75

lpps 85.85 90.48 82.63 95.97 73.60 85.83

Table 3.9: The error breakdown of our UCCA parser. * denotes the ranking of postevalua-
tion results.

data tops anchors edge attr all

TUPA single
all 78.73 69.17 16.96 15.18 27.56

lpps 86.03 76.26 28.32 24.00 40.06

TUPA multi
all 84.92 65.74 12.99 9.07 23.65

lpps 88.89 77.76 26.45 18.32 41.04

Che et al. [158]
all 1.00 95.36 72.66 61.98 81.67

lpps 1.00 96.99 73.08 48.37 82.61

Ours(*5)
all 98.85 94.92 60.17 0.00 74.00

lpps 96.00 96.75 60.20 0.00 75.17

Ours + ELMo
all 99.38 95.70 64.88 0.00 76.94

lpps 98.00 96.84 66.63 0.00 78.77



CHAPTER 4

STRUCTURAL INDUCTIVE BIASES FOR

OBSERVING DIALOGUE IN THERAPY

Conversational agents have long been studied in the context of psychotherapy, going

back to chatbots such as ELIZA [98] and PARRY [163]. Research in modeling such dialogue

has largely sought to simulate a participant in the conversation.

In this chapter, we argue for modeling dialogue observers instead of participants, and

focus on psychotherapy. 1 An observer could help an ongoing therapy session in several

ways. First, by monitoring fidelity to therapy standards, a helper could guide both veteran

and novice therapists towards better patient outcomes. Second, rather than generating

therapist utterances, it could suggest the type of response that is appropriate. Third, it could

alert a therapist about potentially important cues from a patient. Such assistance would be

especially helpful in the increasingly prevalent online or text-based counseling services, e.g.,

Crisis Text Line (https://www.crisistextline.org), 7 Cups (https://www.7cups.com),

etc.

We ground our study in a style of therapy called Motivational Interviewing [MI, 55, 56],

which is widely used for treating addiction-related problems. To help train therapists, and

also to monitor therapy quality, utterances in sessions are annotated using a set of behavioral

codes called Motivational Interviewing Skill Codes [MISC, 138]. Table 2.2 shows standard

therapist and patient (i.e., client) codes with examples. Recent NLP work [18, 139, 164, 165,

inter alia] has studied the problem of using MISC to assess completed sessions. Despite its

usefulness, automated post hoc MISC labeling does not address the desiderata for ongoing

sessions identified above; such models use information from utterances yet to be said. To

provide real-time feedback to therapists, we define two complementary dialogue observers:

1Adapted with permission from Cao et al. [54] published under a Creative Commons Attribution 4.0
International License.

https://www.crisistextline.org
https://www.7cups.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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1. Categorization: Monitoring an ongoing session by predicting MISC labels for thera-

pist and client utterances as they are made.

2. Forecasting: Given a dialogue history, forecasting the MISC label for the next utter-

ance, thereby both alerting or guiding therapists.

Via these tasks, we envision a helper that offers assistance to a therapist in the form of MISC

labels.

We study modeling challenges associated with these tasks related to: (1) representing

words and utterances in therapy dialogue, (2) ascertaining relevant aspects of utterances

and the dialogue history, and (3) handling label imbalance (as evidenced in Table 2.2). We

develop neural models that address these challenges in this domain.

Experiments show that our proposed models outperform baselines by a large margin.

For the categorization task, our models even outperform previous session-informed ap-

proaches that use information from future utterances. For the more difficult forecasting task,

we show that even without having access to an utterance, the dialogue history provides

information about its MISC label. We also report the results of an ablation study that shows

the impact of the various design choices. 2

In summary, in this chapter, we (1) factorize the dialogue sequential structure via

defining the tasks of categorizing and forecasting Motivational Interviewing Skill Codes

to provide real-time assistance to therapists, (2) propose neural models for both tasks that

outperform several baselines, and (3) show the impact of various modeling choices via

extensive analysis.

4.1 Background and Motivation
As Table 2.2 shows, client labels mark utterances as discussing changing or sustaining

problematic behavior (CT and ST, respectively) or being neutral (FN). Therapist utterances

are grouped into eight labels, some of which (RES, REC) correlate with improved outcomes,

while MI nonadherent (MIN) utterances are to be avoided. MISC labeling was originally

done by trained annotators performing multiple passes over a session recording or a tran-

script. Recent NLP work speeds up this process by automatically annotating a completed

MI session [e.g., 18, 139, 164].

2The code is available online at https://github.com/utahnlp/therapist-observer

https://github.com/utahnlp/therapist-observer
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Instead of providing feedback to a therapist after the completion of a session, can a dialogue

observer provide online feedback? While past work has shown the helpfulness of post hoc

evaluations of a session, prompt feedback would be more helpful, especially for MI

nonadherent responses. Such feedback opens up the possibility of the dialogue observer

influencing the therapy session. It could serve as an assistant that offers suggestions to a

therapist (novice or veteran) about how to respond to a client utterance. Moreover, it could

help alert the therapist to potentially important cues from the client (specifically, CT or ST).

4.2 Independent Factorization for
Motivational Interviewing

In this section, we will formally define the two NLP tasks corresponding to the vision

in Section 4.1 using the conversation in Table 4.1 as a running example. Suppose we

have an ongoing MI session with utterances u1, u2, · · · , un: together, the dialogue history

Hn. Each utterance ui is associated with its speaker si, either C (client) or T (therapist).

We will define two classification tasks over a fixed dialogue history with n elements —

categorization Section 4.2.1 and forecasting Section 4.2.2. Then we make a comparative

analysis on the independent factorization for the two tasks Section 4.2.3.

4.2.1 Task 1: Categorization

The goal of this task is to provide real-time feedback to a therapist during an ongoing

MI session. In the running example, the therapist’s confrontational response in the third

utterance is not MI adherent (MIN); an observer should flag it as such to bring the therapist

back on track. The client’s response, however, shows an inclination to change their behavior

(CT). Alerting a therapist (especially a novice) can help guide the conversation in a direction

that encourages it.

In previous posthoc dialogue analysis setting, we have the following definition for the

categorization task: Given the dialogue history Hn = {u1, u2, ..., un} which includes the speaker

information, output a sequence of MISC label Ln = {l1, l2, ..., ln} for each utterance ui.

In essence, we have the following real-time classification task: Given the dialogue history

Hn which includes the speaker information, predict the MISC label ln for the last utterance un.

The key difference from previous work in predicting MISC labels is that we are restricting

the input to the real-time setting. As a result, models can only use the dialogue history to
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predict the label, and in particular, we can not use models such as a conditional random

field or a bidirectional LSTM that need both past and future inputs.

4.2.2 Task 2: Forecasting

A real-time therapy observer may be thought of as an expert therapist who guides a

session with suggestions to the therapist. For example, after a client discloses their recent

drug use relapse, a novice therapist may respond in a confrontational manner (which is

not recommended, and hence coded MIN). On the other hand, a seasoned therapist may

respond with a complex reflection (REC) such as “Sounds like you really wanted to give up

and you’re unhappy about the relapse.” Such an expert may also anticipate important cues

from the client.The MISC forecasting task is a previously unstudied problem in the posthoc

dialogue analysis.

The forecasting task seeks to mimic the intent of such a seasoned therapist: Given a

dialogue history Hn and the next speaker’s identity sn+1, predict the MISC code ln+1 of the yet

unknown next utterance un+1.

We argue that forecasting the type of the next utterance, rather than selecting or

generating its text as has been the focus of several recent lines of work [e.g., 166, 167, 168],

allows the human in the loop (the therapist) the freedom to creatively participate in

the conversation within the parameters defined by the seasoned observer, and perhaps

even rejecting suggestions. Such an observer could be especially helpful for training

therapists [169]. The forecasting task is also related to recent work on detecting antisocial

comments in online conversations [170] whose goal is to provide an early warning for such

events.

4.2.3 Independent Factorization for Categorization
and Forecasting Task

Take the dialogue segment in Table 4.1 as a running example, we compare the catego-

rization and forecasting task for each turn, with respect to the independent factorization

for the dialogue history and predicting target. Both categorization and forecasting tasks

are taking a sequence of dialogue utterances as input, and then predict a sequence of MISC

labels as output. They share similar sequence labeling structures and seem to share the same

independent factorization. However, they have different predicting goals when considering
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each dialogue turn. In the following, we first introduce how we decompose the sequence

of output MISC labels according to the speaker, and then we present the sliding window

to decompose the input dialogue history. Table 4.2 shows the clear differences when we

choose dialogue history window size as 3.

4.2.3.1 Output Decomposition

The outputs of both tasks are a sequence of MISC labels. Because each MISC label is

naturally associated with a corresponding utterance, representing different functions as

shown in Table 2.2. Hence for independent factorization, it is natural to decompose the

whole sequence prediction into a set of continuous single MISC label prediction tasks

as defined previously. In such a way, each MISC prediction in the categorization or

forecasting task is independent of the MISC prediction in the previous dialogue turn.

However, they have different goals for each dialogue turn. When the dialogue goes to turn

3, both the categorization and forecasting task will observe the current dialogue history

window as input X = Hn. However, the key difference is as follows: the categorization

task is to predict the MISC code ln for the last seen utterance un, while the forecasting

task is to guess the future MISC code ln+1 for the unseen utterance un+1. To model this

difference on output decomposition, we introduce four components for dialogue and

sentence representation learning and search for the best model for each task Section 4.3.

Furthermore, the MISC codes for the clients and therapist represent different meanings

and functions for motivational skills. For example, the client MISC codes ( ST, CT, and FN)

discuss the client’s intention to change or sustain problematic behavior or be neutral. While

the therapist codes represent the actions the therapist takes for a motivational interview (e.g.,

giving information GI, simple reflection RES). To simplify the modeling, we also decompose

the output according to the speakers. For example, for the categorization task, we build two

models Cc and Ct for client and therapist codes separately. Similar for the forecasting task,

we study the Fc and Ft for client and therapist. After such output decomposition, every

model only needs to classify on a unified set of MISC labels, representing coherent goals for

the clients or the therapist.
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4.2.3.2 Input Decomposition and Alignments Discovery

For the input decomposition in previous lexical anchoring and phrasal anchoring, the

corresponding output label can be directly derived from each input segment. For example,

in lexical anchoring, each concept or subgraph in an AMR graph is aligned to each token

or special entity. In phrasal anchoring, a nonterminal intent and slot label in TOP is

aligned to a phrase in the input sentence. In MISC code prediction, the MISC code is

assigned to a utterance. However, the MISC code can not be derived by only a single

token , phrase or the aligned utterance. According to the MISC annotation guidedline, the

identification of relevant words or utterances may depend on the whole dialogue history.

For example, reflection related MISC (RES, REC) may need to discover which utterance

in the dialogue history the therapist are reflecting to. Hence, more than the previous

hard-aligned lexical-anchoring or phrasal-anchoring parsing, it requires to discovering the

relevant details in the meaning of the sentence within the context of dialogue history. In

Section 4.3, we proposed a hierarchical dialogue encoder to model the nest structures of

dialogue, and we also offered word-level and utterance-level attention to help discover the

relevant parts in it.

Due to the realtime setting, the input dialogue is naturally decomposed by time steps,

and forms a sequence of incremental dialogue history {u1}, {u1, u2}, and {u1, u2, u3}. When

the dialogue goes to the turn 4, the dialogue history will slide to the next window of size

3, as Hn = {u2, u3, u4}. The u1 will be truncated due the sliding window. We limit the

dialogue window because the whole therapy dialogue session may last for 500 utterances,

where current neural models such as RNN and transformer can not handle the long context

well. In this dissertation study Section 4.5.2, we compare the window size as 8 and 16 for

our models. We leave the extremely long dialogue context encoding as the future work.

4.3 Models for MISC Prediction
Modeling the categorization and forecasting tasks defined in Section 4.2 requires ad-

dressing four questions:

• How do we encode a dialogue and its utterances?

• Can we discover discriminative words in each utterance?
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• Can we discover which of the previous utterances are relevant?

• How do we handle label imbalance in our data?

Many recent advances in neural networks can be seen as plug-and-play components. To

facilitate the comparative study of models, we will describe components that address the

above questions. In the rest of the chapter, we will use boldfaced terms to denote vectors

and matrices and SMALL CAPS to denote component names.

4.3.1 Encoding Dialogue

Since both our tasks are classification tasks over a dialogue history, our goal is to convert

the sequence of utterences into a single vector that serves as input to the final classifier.

We will use a hierarchical recurrent encoder [171, 172, 173, and others] to encode

dialogues, specifically a hierarchical gated recurrent unit (HGRU) with an utterance

and a dialogue encoder. We use a bidirectional GRU over word embeddings to encode

utterances. As is standard, we represent an utterance ui by concatenating the final forward

and reverse hidden states. We will refer to this utterance vector as vi. Also, we will use

the hidden states of each word as inputs to the attention components in Section 4.3.2. We

will refer to such contextual word encoding of the jth word as vij. The dialogue encoder

is a unidirectional GRU that operates on a concatenation of utterance vectors vi and a

trainable vector representing the speaker si. 3 The final state of the GRU aggregates the

entire dialogue history into a vector Hn.

The HGRU skeleton can be optionally augmented with the word and dialogue attention

described next. All the models we will study are two-layer MLPs over the vector Hn that

use a ReLU hidden layer and a softmax layer for the outputs.

4.3.2 Word-Level Attention

Certain words in the utterance history are important to categorize or forecast MISC

labels. The identification of these words may depend on the utterances in the dialogue. For

example, to identify that an utterance is a simple reflection (RES) we may need to discover

3For the dialogue encoder, we use a unidirectional GRU because the dialogue is incomplete. For words,
since the utterances are completed, we can use a BiGRU.



77

that the therapist is mirroring a recent client utterance; the example in Table 2.2 illustrates

this. Word attention offers a natural mechanism for discovering such patterns.

We can unify a broad collection of attention mechanisms in NLP under a single high

level architecture [174]. We seek to define attention over the word encodings vij in the

history (called queries), guided by the word encodings in the anchor vnk (called keys). The

output is a sequence of attention-weighted vectors, one for each word in the ith utterance.

The jth output vector aj is computed as a weighted sum of the keys:

aij = ∑
k

αk
j vnk (4.1)

The weighting factor αk
j is the attention weight between the jth query and the kth key,

computed as

αk
j =

exp
(

fm(vnk, vij)
)

∑j′ exp
(

fm(vnk, vij′)
) (4.2)

Here, fm is a match scoring function between the corresponding words, and different

choices give us different attention mechanisms.

Finally, a combining function fc combines the original word encoding vij and the

above attention-weighted word vector aij into a new vector representation zij as the final

representation of the query word encoding:

zij = fc(vij, aij) (4.3)

The attention module, identified by the choice of the functions fm and fc, converts word

encodings in each utterance vij into attended word encodings zij. To use them in the HGRU

skeleton, we will encode them a second time using a BiGRU to produce attention-enhanced

utterance vectors. For brevity, we will refer to these vectors as vi for the utterance ui. If

word attention is used, these attended vectors will be treated as word encodings.

To complete this discussion, we need to instantiate the two functions. We use two

commonly used attention mechanisms: BiDAF [175] and gated matchLSTM [176]. For

simplicity, we replace the sequence encoder in the latter with a BiGRU and refer to it as

GMGRU. Table 4.3 shows the corresponding definitions of fc and fm. We simplify BiDAF

with multiplicative attention between word pairs for fm, while GMGRU uses additive

attention influenced by the GRU hidden state. The vector we ∈ Rd, and matrices W k ∈ Rd×d

and W q ∈ R2d×2d are parameters of the BiGRU. The vector hj−1 is the hidden state from the
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BiGRU in GMGRU at previous position j− 1. For combination function, BiDAF concatenates

bidirectional attention information from both the key-aware query vector aij and a similarly

defined query-aware key vector a′. GMGRU uses simple concatenation for fc.We refer the

reader to the original papers for further details. In subsequent sections, we will refer to the

two attended versions of the HGRU as BIDAFH and GMGRUH.

4.3.3 Utterance-Level Attention

While we assume that the history of utterances is available for both our tasks, not every

utterance is relevant to decide a MISC label. For categorization, the relevance of an utterance

to the anchor may be important. For example, a complex reflection (REC) may depend

on the relationship of the current therapist utterance to one or more of the previous client

utterances. For forecasting, since we do not have an utterance to label, several previous

utterances may be relevant. For example, in the conversation in Table 4.1, both u2 and u4

may be used to forecast a complex reflection.

To model such utterance-level attention, we will employ the multihead, multihop

attention mechanism used in Transformer networks [44]. As before, due to space constraints,

we refer the reader to the original work for details. We will use the (Q, K, V) notation from

the original paper here. These matrices represent a query, key and value, respectively. The

multihead attention is defined as:

Multihead(Q, K, V) = [head1; · · · ; headh]WO (4.4)

headi = softmax

(
QW Q

i

(
KWK

i
)T

√
dk

)
VWV

i (4.5)

The Wi’s refer to projection matrices for the three inputs, and the final W o projects the

concatenated heads into a single vector.

The choices of the query, key and value defines the attention mechanism. In our work, we

compare two variants: anchor-based attention, and self-attention. The anchor-based attention

is defined by Q = [vn] and K = V = [v1 · · · vn]. Self-attention is defined by setting all three

matrices to [v1 · · · vn]. For both settings, we use four heads and stacking them for two hops,

and refer to them as SELF42 and ANCHOR42.
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4.3.4 Predicting and Training

From top to the bottom, every component will produce some of useful representation for

inferences in our tasks. The dialogue encoding vector Hn, as the final of the unidirectional

GRU, it is also the contextual utterance encoding hun of un. Hence Hn can be directly used as

a representaion of un for classification in annotating tasks, also can be used as a represention

of whole dialogue for forecasting task. Hence in HGRU setting, we always use Hn as the

base option as input for inference.

However, for CON skeleton, the final state Cn doest not exactly represent the segement

un in the whole concatnated dalogue. Hence, we concatenate the hidden state of the start

position (0) and end position (T) of un into vseg
n = [hu0

n
; huT

n
], which is contextual utterance

encoding in CON mode.

Beside the above Hn and Cn contextual utterance encoding in dialogue level, our

components also produced the original utterance encoding vn from utterance encoder.

Whats’more, in CON mode, we can use history-aware utterance encoding vwordatt
n While in

HGRU, it produced a self-attentive utterance encoding. We denote it as vsel f att
n .

We summarize the option input encodings for inference in Table 4.4. There are two ways

to scoring withthese inputs, one is to score the concatenated those vectors together, denoted

as concat(A, B) = MLP([A; B); The other one is scoring each of them first and then add the

scores up as the final scores, such as add(A, B) = MLP(A) + MLP(B).

4.3.5 Addressing Label Imbalance

From Table 2.2, we see that both client and therapist labels are imbalanced. Moreover,

rarer labels are more important in both tasks. For example, it is important to identify CT

and ST utterances. For therapists, it is crucial to flag MI nonadherent (MIN) utterances;

seasoned therapists are trained to avoid them because they correlate negatively with patient

improvements. If not explicitly addressed, the frequent but less useful labels can dominate

predictions.

To address this, we extend the focal loss [FL 177] to the multiclass case. For a label l

with probability produced by a model pt, the loss is defined as

FL(pt) = −αt(1 − pt)
γ log(pt) (4.6)

In addition to using a label-specific balance weight αt, the loss also includes a modulating
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factor (1 − pt)
γ to dynamically downweight well-classified examples with pt ≫ 0.5. Here,

the αt’s and the γ are hyperparameters. We use FL as the default loss function for all our

models.

4.4 Experiments
The original psychotherapy sessions were collected for both clinical trials and Moti-

vational Interviewing dissemination studies including hospital settings [178], outpatient

clinics [179], college alcohol interventions [180, 181, 182, 183]. All sessions were annotated

with the Motivational Interviewing Skills Codes (MISC) [184]. We use the train/test split

of Tanana et al. [18], Can et al. [185] to give 243 training MI sessions and 110 testing

sessions. We used 24 training sessions for development. As mentioned in Section 4.1, all

our experiments are based on the MISC codes grouped by Xiao et al. [139].

4.4.1 Preprocessing and Model Setup

An MI session contains about 500 utterances on average. We use a sliding window of

size N = 8 utterances with padding for the initial ones. We assume that we always know

the identity of the speaker for all utterances. Based on this, we split the sliding windows

into a client and therapist windows to train separate models. We tokenized and lower-cased

utterances using spaCy [186]. To embed words, we concatenated 300-dimensional Glove

embeddings [70] with ELMo vectors [68].

We use 300-dimensional Glove embeddings pretrained on 840B tokens from Common

Crawl [70]. We do not update the embedding during training. Tokens not covered by

Glove are using a randomly initialized UNK embedding. We also use character-level deep

contextualized embedding ELMo 5.5B model by concatenating the corresponding ELMo

word encoding after the word embedding vector. For speaker information, we randomly

initialize them with 8 dimensional vectors and update them during training. We used a

dropout rate of 0.3 for the embedding layers.

We trained all models using Adam [157] with learning rate chosen by cross validation

between [1e−4, 5 ∗ 1e−4], gradient norms clipping from at [1.0, 5.0], and minibatch sizes of

32 or 64. We use the same hidden size for both utterance encoder, dialogue encoder and

other attention memory hidden size; it has been selected from {64, 128, 256, 512}. We set a
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smaller dropout 0.2 for the final two fully connected layers. All the models are trained for

100 epochs with early-stoping based on macro F1 over development results.

4.4.2 Results

Our goal is to discover the best client and therapist models for the two tasks. We first

summarize the best configuration and the corresponding performance of our best models

for both categorzing and forecasting MISC codes in Table 4.5 with precision, recall and

F1 for each codes. Then, we also show the performance of these models against various

baselines.

We identified the following best configurations using F1 score on the development set:

1. Categorization: For client, the best model does not need any word or utterance

attention. For the therapist, it uses GMGRUH for word attention and ANCHOR42 for

utterance attention. We refer to these models as CC and CT, respectively.

2. Forecasting: For both client and therapist, the best model uses no word attention, and

uses SELF42 utterance attention. We refer to these models as FC and FT, respectively.

4.4.2.1 Results on Categorization

Tables 4.6 and 4.7 show the performance of the CC and CT models and the baselines. For

both therapist and client categorization, we compare the best models against the same set of

baselines. The majority baseline illustrates the severity of the label imbalance problem. Xiao

et al. [139], BiGRUgeneric, Can et al. [185] and Tanana et al. [18] are the previous published

baselines. The best results of previous published baselines are underlined. The last row

∆ in each table lists the changes of our best model from them. BiGRUELMo, CONCATC,

GMGRUH and BiDAFH are new baselines we define below.

The first set of baselines (above the line) do not encode dialogue history and use only the

current utterance encoded with a BiGRU. The work of Xiao et al. [139] falls in this category,

and uses a 100-dimensional domain-specific embedding with weighted cross-entropy loss.

Previously, it was the best model in this class. We also reimplemented this model to use

either ELMo or Glove vectors with focal loss. 4

The second set of baselines (below the line) are models that use dialogue context. Both

4Other related work in no context exists [e.g., 164, 187], but they either do not outperform Xiao et al. [139] or
use different data.
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Can et al. [185] and Tanana et al. [18] use well-studied linguistic features and then tagging

the current utterance with both past and future utterance with CRF and MEMM, respectively.

To study the usefulness of the hierarchical encoder, we implemented a model that uses a

bidirectional GRU over a long sequence of flattened utterance. We refer to this as CONCATC.

This model is representative of the work of Huang et al. [165], but was reimplemented to

take advantage of ELMo.

For categorizing client codes, our model CC uses final dialogue vector Hn and current

utterance vector vn as input of MLP for final prediction. We found that predicting us-

ing MLP(Hn) + MLP(vn) performs better than just MLP(Hn). As shown in Table 4.6,

BiGRUELMo is a simple but robust baseline model. It outperforms the previous best

no-context model by more than 2 points on macro F1. Using the dialogue history, the

more sophisticated model CC further gets 1 point improvement. Especially important is its

improvement on the infrequent, yet crucial labels CT and ST. It shows a drop in the F1 on

the FN label, which is essentially considered to be an unimportant, background class from

the point of view of assessing patient progress.

For therapist codes, as the highlighted numbers in Table 4.7 show, only incorporating

GMGRU-based word-level attention, GMGRUH has already outperformed many baselines,

our proposed model FT which uses both GMGRU-based word-level attention and anchor-

based multihead multihop sentence-level attention can further achieve the best overall

performance. The set of baseline models are the same as in Table 4.6, but tuned for therapist

codes. For the two grouped MISC set MIA and MIN, the results for Can et al. [185]

and Tanana et al. [18] are not reported in their original work due to different setting. Also,

note that our models outperform approaches that take advantage of future utterances.

For both client and therapist codes, concatenating dialogue history with CONCATC

always performs worse than the hierarchical method and even the simpler BiGRUELMo.

4.4.2.2 Results on Forecasting

Since the forecasting task is new, there are no published baselines to compare against.

Our baseline systems essentially differ in their representation of dialogue history. The

model CONCATF uses the same architecture as the model CONCATC from the categorizing

task. We also show comparisons to the simple HGRU model and the GMGRUH model
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that uses a gated matchGRU for word attention. 5

Tables 4.8 and 4.9 show our forecasting results for client and therapist, respectively. For

client codes, we also report the CT and ST performance on the development set because

of their importance. For the therapist codes, we also report the recall@3 to show the

performance of a suggestion system that displayed three labels instead of one. The results

show that even without an utterance, the dialogue history conveys signal about the next

MISC label. Indeed, the performance for some labels is even better than some categorization

baseline systems. Surprisingly, word attention (GMGRUH) in both the Table 4.8 and

Table 4.9 did not help in forecasting setting, and a model with the SELF42 utterance attention

is sufficient. For the therapist labels, if we always predicted the three most frequent labels

(FA, GI, and RES), the recall@3 is only 67.7, suggesting that our models are informative if

used in this suggestion-mode.

4.5 Analysis and Ablations
This section reports error analysis and ablation studes of our models on the development

set. It includes the confusion matrix analysis (Section 4.5.1), the impact of the focal loss

compared to simple or weighted cross-entropy (Section 4.5.3), the comparasion between

pretrained domain-specific ELMo/glove with generic ones (Section 4.5.4), and empathetic

analysis (Section 4.5.5).

4.5.1 Label Confusion and Error Breakdown

Figure 4.1 shows the confusion matrix for the client categorization task. The confusion

between FN and CT/ST is largely caused by label imbalance. There are 414 CT examples

that are predicted as ST and 391 examples vice versa. To further understand their confusion,

we selected 100 of each for manual analysis. We found four broad categories of confusion,

shown in Table 4.10.

The first category requires more complex reasoning than just surface form matching. For

example, the phrase seven out of ten indicates that the client is very confident about changing

behavior; the phrase wind down after work indicates, in this context, that the client drinks or

5The forecasting task bears similarity to the next utterance selection task in dialogue state tracking work [168].
In preliminary experiments, we found that the Dual-Encoder approach used for that task consistently
underperformed the other baselines described here.
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smokes after work. We also found that the another frequent source of error is incomplete

information. In a face-to-face therapy session, people may use concise and effient verbal

communication, with guestures and other body language conveying information without

explaining details about, for example, coreference. With only textual context, it is difficult

to infer the missing information. The third category of errors is introduced when speech is

transcribed into text. The last category is about ambivalent speech. Discovering the real

attitude towards behavior change behind such utterances could be difficult, even for an

expert therapist.

Figures 4.1 and 4.2 show the label confusion matrices for the best categorization models.

We will examine confusions that are not caused purely by a label being frequent. We observe

a common confusion between the two reflection labels, REC and RES. Compared to the

confusion matrix from Xiao et al. [139], we see that our models show much-decreased

confusion here. There are two reason for this confusion persisting. First, the reflections

may require a much longer information horizon. We found that by increasing the window

size to 16, the overall reflection results improved. Second, we need to capture richer

meaning beyond surface word overlap for RES. We found that complex reflections usually

add meaning or emphasis to previous client statements using devices such as analogies,

metaphors, or similes rather than simply restating them.

Closed questions (QUC) and simple reflections (RES) are known to be a confusing set of

labels. For example, an utterance like “Sounds like you’re suffering?” may be both. Giving

information (GI) is easily confused with many labels because they relate to providing

information to clients, but with different attitudes. The MI adherent (MIA) and nonadherent

(MIN) labels may also provide information, but with supportive or critical attitude that may

be difficult to disentangle, given the limited number of examples.

4.5.2 How Context and Attention Help?

We evaluated various ablations of our best models to see how changing various de-

sign choices changes performance. We focused on the context window size and impact

of different word level and sentence level attention mechanisms. Tables 4.11 and 4.12

summarize our results on categorizing on client codes and therapist codes, respectively.

While Table 4.13 summarize all results on forecasting client codes and therapist codes in the
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same table.

4.5.2.1 History Size

Increasing the history window size generally helps. The biggest improvements are

for categorizing therapist codes (Table 4.12), especially for the RES and REC. However,

increasing the window size beyond 8 does not help to categorize client codes (Table 4.11) or

forecasting (Table 4.13).

4.5.2.2 Word-Level Attention

Only the model CT uses word-level attention. As shown in Table 4.12, when we

remove the word-level attention from it, the overall performance drops by 3.4 points,

while performances of RES and REC drop by 3.3 and 5 points, respectively. Changing the

attention to BiDAF decreases performance by about 2 points (still higher than the model

without attention).

4.5.2.3 Sentence-Level Attention

Removing sentence attention from the best models that have it decreases performance

for the models CT and FT (). It makes little impact on the FC, however. Table 4.11 shows

that neither attention helps categorizing clients codes.

4.5.3 How Focal Loss Helps on Label Imbalance?

We always use the same α for all weighted focal loss. Besides considering the label

frequency, we also consider the performance gap between previous reported F1. We choose

to balance weights α as {1.0,1.0,0.25} for CT,ST and FN, respectively, and {0.5, 1.0, 1.0, 1.0,

0.75, 0.75,1.0,1.0} for FA, RES, REC, GI, QUC, QUO, MIA, MIN. As shown in Table 4.14, we

report our ablation studies on cross-entropy loss, weighted cross-entropy loss, and focal loss.

Besides the fixed weights, focal loss offers flexible hyperparameters to weight examples

in different tasks. Experiments shows that except for the model CT, focal loss outperforms

cross-entropy loss and weighted cross entropy.

4.5.4 Can Domain Specific Glove and ELMo Help More?

We use the general psychotherapy corpus with 6.5M words (Alexander Street Press) to

train the domain specific word embeddings Glovepsyc with 50, 100, 300 dimension. Also, we



86

trained ELMo with 1 highway connection and 256-dimensional output size to get ELMopsyc.

We found that ELMo 5.5B performs better than ELMo psyc in our experiments, and general

Glove-300 is better than the Glovepsyc. Hence for main results of our models, we use

ELMogeneric by default. Please see more details in Table 4.15

4.5.5 Can We Suggest Empathetic Responses?

Our forecasting models are trained on regular MI sessions, according to the label

distribution on Table 2.2, there are both MI adherent or nonadherent data. Hence, our

models are trained to show how the therapist usually respond to a given statement.

To show whether our model can mimic good MI policies, we selected 35 MI sessions

from our test set which were rated 5 or higher on a 7-point scale empathy or spirit. On these

sessions, we still achieve a recall@3 of 76.9, suggesting that we can learn good MI policies

by training on all therapy sessions. These results suggest that our models can help train

new therapists who may be uncertain about how to respond to a client.

4.6 Related Work
In this section, we review the related work on MISC code prediction, dialogue represen-

tation and attention mechanism.

4.6.1 MISC Code Prediction

MEMM and CRF with handcrafted features are firstly proposed by Can et al. [185, 188]

for the MISC code prediction task . Then Tanana et al. [189] improved the model by

incorporating richer dependency relation features, which even outperformed a proposed

recursive neural network baseline model. Recently, Xiao et al. [139] proposed to use GRU

with domain-specific word embedding and weighted cross-entropy loss to resolve the

label imbalance problem. This paper studies the solutions drawn from recent work in

dialogue representation, memory attention, and imbalanced classification. Besides that,

other improvements exist, such as topic models based domain adaption [165, 184], and

prosodic features [190] have been proposed to improve the prediction tasks.
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4.6.2 Dialogue Representation and Hierarchical Encoder

End-to-End neural networks and attention mechanisms have been widely used in

many natural language tasks, such as text classification, question answering, dialogue

systems, etc. RNN, CNN, and Transformer has been quite effective for modeling the

sequence of words [191, 192]. Combinations of them have also been used to model the

hierarchical structure of document and dialogue context. They first use CNN or LSTM to

get a sentence vector, and then a BiGRU to compose a sentence vector to get a document

vector [171, 172, 173, 193, 194, 195]. In our paper, we use hierarchical GRU as skeletons.

Other hierarchical combinations may also help, we leave it for future studies.

4.6.3 Attention Mechanism

Attention mechanism was first proposed by Bahdanau et al. [196] in machine trans-

lation, then various of extensions has been invented and widely used in other tasks,

especially for question answering and dialogue system [175, 197, 198, 199, 200]. Attention

on sentence-level representation also helps in many recent works such as abstractive

summarization [201], dialogue state tracking [202, 203], document classification [194].

Previous work on hierarchical attention [194] tries always to use both word-level and

sentence-level attention in a model, In this chapter, we argue that, for different tasks, we

need different levels attentions. Always adding two-level attention may be not necessary.

Recently, multiheads multihop attention used in Transformer [44] became a more attractive

attention mechanism. All the above advances in NLP inspired us to systematically analyze

whether or how they impact our tasks.

4.7 Chapter Summary
We addressed the question of providing real-time assistance to therapists and proposed

the tasks of categorizing and forecasting MISC labels for an ongoing therapy session. By

developing a modular family of neural networks for these tasks, we show that our models

outperform several baselines by a large margin. Ablation studies on history size, word-level

and sentence-level attention, focal loss and generic or domain-specific embeddings, shows

how each of them helps in our tasks. Extensive analysis shows that our model can decrease

the label confusion compared to previous work, especially for reflections and rare labels.
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The experimental results show that word-level and sentence-level attention mechanism

can help our independent factorization to discover the relevant parts for our local factor

modelling without the hard alignment.

Furthermore, our model trained on regular MI sessions with both MI adherent and

nonadherent utterances can still achieve a recall@3 of 76.9 on selected good MI sessions.

Hence our model potentially helps for therapist training on psychotherapy domain. Beyond

the strategy of mimic good therapy dialogue session, in the future, we also can extend the

study to other strategies. For example, one possibility is to use some sort of an external

idea of checklist on how the dialogue should go. In this way, the checklist can supervise the

dialogue flow on the going. Another possiblity is that we can use reinforcement learning to

model the reward and policy towards the final goal of motivational interview: facilitating

behaviour change.
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Figure 4.1: Confusion matrix for categorizing client codes, normalized by row.
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Figure 4.2: Confusion matrix for categorizing therapist codes, normalized by row.
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Table 4.1: An example of ongoing therapy session.

i si ui li
1 T: Have you used drugs recently? QUC

2 C: I stopped for a year, but relapsed. FN

3 T: You will suffer if you keep using. MIN

4 C: Sorry, I just want to quit. CT

· · · · · · · · ·

Table 4.2: The differences between the categorization task and the forecasting task, when
choosing a window size as 3 to factorize the dialogue sequential flow.

Turn X = Hn
Categorization Forecasting

Y = ln Y = ln+1
1 {u1} QUC FN

2 {u1, u2} FN MIN

3 {u1, u2, u3} MIN CT

4 {u2, u3, u4} CT RES

Table 4.3: Summary of word attention mechanisms.

Method fm fc
BiDAF vnkvT

ij [vij; aij; vij ⊙ aij; vij ⊙ a′]

GMGRU we tanh(W kvnk + W q[vij; hj−1]) [vij; aij]

Table 4.4: Input options for annotating and forecasting tasks based on CON and HGRU
skeletons.

Skeleton Categorization Forecasting
CON vseg

n ,vwordattn , vn Cn

HGRU Hn,vsel f att
n ,vn Hn
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Table 4.5: Performance of our proposed models with respect to precision, recall and F1 on
categorizing and forecasting tasks for client and therapist codes.

Label
Categorizing Forecasting
P R F1 P R F1

FN 92.5 86.8 89.6 90.8 80.3 85.2
CT 34.8 44.7 39.1 18.9 28.6 22.7
ST 28.2 39.9 33.1 19.5 33.7 24.7
FA 95.1 94.7 94.9 70.7 73.2 71.9
RES 50.3 61.3 55.2 20.1 18.8 19.5
REC 52.8 55.5 54.1 19.2 34.7 24.7
GI 74.6 75.1 74.8 52.8 67.5 59.2
QUC 80.6 70.4 75.1 36.2 24.3 29.1
QUO 85.3 81.2 83.2 27.0 11.8 16.4
MIA 61.8 52.4 56.7 27.0 10.6 15.2
MIN 27.7 28.5 28.1 17.2 10.2 12.8

Table 4.6: Main results on categorizing client codes, in terms of macro F1, and F1 for each
client code.

Method macro FN CT ST

Majority 30.6 91.7 0.0 0.0
Xiao et al. [139] 50.0 87.9 32.8 29.3
BiGRUgeneric 50.2 87.0 35.2 28.4
BiGRUELMo 52.9 87.6 39.2 32.0

Can et al. [185] 44.0 91.0 20.0 21.0
Tanana et al. [18] 48.3 89.0 29.0 27.0
CONCATC 51.8 86.5 38.8 30.2
GMGRUH 52.6 89.5 37.1 31.1
BiDAFH 50.4 87.6 36.5 27.1

CC 53.9 89.6 39.1 33.1
∆ = CC − score +3.5 -2.1 +3.9 +3.8
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Table 4.7: Main results on categorizing therapist codes, in terms of macro F1, and F1 for
each therapist code.

Method macro FA RES REC GI QUC QUO MIA MIN

Majority 5.87 47.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Xiao et al. [139] 59.3 94.7 50.2 48.3 71.9 68.7 80.1 54.0 6.5
BiGRUgeneric 60.2 94.5 50.5 49.3 72.0 70.7 80.1 54.0 10.8
BiGRUELMo 62.6 94.5 51.6 49.4 70.7 72.1 80.8 57.2 24.2

Can et al. [185] - 94.0 49.0 45.0 74.0 72.0 81.0 - -
Tanana et al. [18] - 94.0 48.0 39.0 69.0 68.0 77.0 - -
CONCATC 61.0 94.5 54.6 34.3 73.3 73.6 81.4 54.6 22.0
GMGRUH 64.9 94.9 56.0 54.4 75.5 75.7 83.0 58.2 21.8
BiDAFH 63.8 94.7 55.9 49.7 75.4 73.8 80.7 56.2 24.0

CT 65.4 95.0 55.7 54.9 74.2 74.8 82.6 56.6 29.7
∆ = CT − score +5.2 +0.3 +3.9 +3.8 +0.2 +2.8 +1.6 +2.6 +18.9

Table 4.8: Main results on forecasting client codes, in terms of F1 for ST, CT on dev set, and
macro F1, and F1 for each client code on the test set.

Method
Dev Test

CT ST macro FN CT ST

CONCATF 20.4 30.2 43.6 84.4 23.0 23.5
HGRU 19.9 31.2 44.4 85.7 24.9 22.5
GMGRUH 19.4 30.5 44.3 87.1 23.3 22.4

FC 21.1 31.3 44.3 85.2 24.7 22.7

Table 4.9: Main results on forecasting therapist codes, in terms of Recall@3, macro F1, and
F1 for each label on test set.

Method
Recall F1

R@3 macro FA RES REC GI QUC QUO MIA MIN

CONCATF 72.5 23.5 63.5 0.6 0.0 53.7 27.0 15.0 18.2 9.0
HGRU 76.0 28.6 71.4 12.7 24.9 58.3 28.8 5.9 17.4 9.7

GMGRUH 76.6 26.6 72.6 10.2 20.6 58.8 27.4 6.0 8.9 7.9

FT 77.0 31.1 71.9 19.5 24.7 59.2 29.1 16.4 15.2 12.8
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Table 4.10: Categorization of CT/ST confusions.The two numbers in the brackets are the
count of errors for predicting CT as ST and vice versa. We exampled 100 examples for each
case.

Category and Explaination Client Examples (Gold MISC)

Reasoning is required to understand whether
a client wants to change behavior, even with
full context (50,42)

T: On a scale of zero to ten how confident are
you that you can implement this change?
C: I don’t know, seven maybe (CT);
I have to wind down after work (ST)

Concise utterances which are easy for humans
to understand, but missing information such
as coreference, zero pronouns (22,31)

I mean I could try it (CT)
Not a negative consequence for me (ST)
I want to get every single second and minute
out of it(CT)

Extremely short (≤ 5) or long sentence (≥
40), caused by incorrect turn segementation.
(21,23)

It is a good thing (ST)
Frankly, I hate it (CT)
Painful (CT)

Ambivalent speech, very hard to understand
even for human. (7,4)

What if it does n’t work I mean what if I can’t
do it (ST)
But I can stop whenever I want(ST)

Table 4.11: Ablation study on categorizing client code. ∗ is our best model CC. All ablation
is based on it. The symbol + means adding a component to it. The default window size is 8
for our ablation models in the word attention and sentence attention parts.

Ablation Options macro FN CT ST

history win-
dow size

0 51.6 87.6 39.2 32.0
4 52.6 88.5 37.8 31.5
8∗ 53.9 89.6 39.1 33.1
16 52.0 89.6 39.1 33.1

word
attention

+ GMGRU 52.6 89.5 37.1 31.1
+ BiDAF 50.4 87.6 36.5 27.1

sentence
attention

+ SELF42 53.9 89.2 39.1 33.2
+ ANCHOR42 53.0 88.2 38.9 32.0
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Table 4.12: Ablation study on categorizing therapist codes, ∗ is our proposed model CT.
\ means substituting and − means removing that component. Here, we only report the
important REC, RES labels for guiding, and the MIN label for warning a therapist.

Ablation Options macro RES REC MIN

history win-
dow size

0 62.6 51.6 49.4 24.2
4 64.4 54.3 53.2 23.7
8∗ 65.4 55.7 54.9 29.7
16 65.6 55.4 56.7 26.7

word
attention

- GMGRU 62.0 51.9 51.7 16.0
\ BiDAF 63.5 54.2 51.3 22.6

sentence
attention

- ANCHOR42 64.9 56.0 54.4 21.8
\ SELF42 63.4 55.5 48.2 21.1

Table 4.13: Ablation study on forecasting task on both client and therapist code. ∗ row are
results of our best forecasting model FC, and FT. \ means substitute anchor attention with
self attention. +GMGRU ANCHOR42 means using word-level attention and achor-based
sentence-level attention together. Word-level attention shows no help for both client and
therapist codes. While sentence-level attention helps more on therapist codes than on
client codes. Multihead self attention also achieves better performance than anchor-based
attention in forecasting tasks.

Ablation Options CT ST R@3 FA RES REC GI QUC QUO MIA MIN

history
size

1 17.2 15.1 66.4 59.4 12.6 9.0 44.6 16.3 14.8 11.9 4.1
4 16.8 22.6 75.3 71.4 15.6 21.1 57.1 29.3 11.0 11.2 14.4
8∗ 24.7 22.7 77.0 72.8 20.8 23.1 58.1 28.3 17.7 15.9 9.0
16 23.9 20.7 76.5 71.2 13.7 24.1 58.5 25.9 9.7 16.2 12.7

word
attention

GMGRU 14.0 23.2 75.7 71.7 14.2 23.0 57.5 26.5 8.0 15.4 11.6
GMGRU4h 19.1 22.9 76.3 71.3 12.1 23.3 58.1 24.5 12.6 11.7 14.0

sentence
attention

− SELF42 24.9 22.5 76.0 71.4 12.7 24.9 58.3 28.8 5.9 17.4 9.7
\ ANCHOR42 22.9 22.9 76.2 72.2 15.5 24.6 59.5 27.1 7.7 16.3 8.3

+ GMGRU \ ANCHOR42 6.8 23.4 76.9 70.8 8.0 24.5 58.3 24.6 10.6 14.9 12.1
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Table 4.14: Abalation study of different loss function on categorizing and forecasting task.
Based on our proposed model for our four settings, we compared our best model with
crossentropy loss(ce), α balanced cross-entropy(wce) and focal loss. Here we only report
the macro F1 for rare labels and the overall macro F1. γ = 1 is the best for both the model
CC and FC, while γ = 0 is the best for CT and γ = 3 for FT. Worth to mention, when γ = 0,
the focal loss degraded into α-balanced crossentropy, that first two rows are the same for
therapist model.

Loss Client Therapist
F1 CT ST F1 RES REC MIA MIN

Cce 47.0 28.4 22.0 60.9 54.3 53.8 53.7 4.8
Cwce 53.5 39.2 32.0 65.4 55.7 54.9 56.6 29.7
Cfl 53.9 39.1 33.1 65.4 55.7 54.9 56.6 29.7
F ce 42.1 17.7 18.5 26.8 3.3 20.8 16.3 8.3
Fwce 43.1 20.6 23.3 30.7 17.9 25.0 17.7 10.9
Ffl 44.2 24.7 22.7 31.1 19.5 24.7 15.2 12.8

Table 4.15: Ablation study for our proposed model with embeddings trained on the
psychotherapy corpus.

Model Embedding macro FN CT ST macro FA RES REC GI QUC QUO MIA MIN

C

ELMo 53.9 89.6 39.1 33.1 65.4 95.0 55.7 54.9 74.2 74.8 82.6 56.6 29.7
ELMopsyc 46.9 88.9 27.5 24.3 64.2 94.9 53.3 53.3 75.8 74.8 82.2 56.1 23.5
Glove 50.6 89.9 33.4 28.6 62.2 94.6 53.7 54.2 70.3 70.0 79.1 54.7 20.9
Glovepysc 47.4 88.4 23.9 30.0 63.4 94.9 54.7 52.8 75.2 71.4 80.8 53.6 23.5

F

ELMo 44.3 85.2 24.7 22.7 31.1 71.9 19.5 24.7 59.2 28.3 17.7 15.9 9.0
ELMopsyc 43.8 84.0 22.4 25.0 29.1 73.5 15.5 24.3 59.1 29.1 9.5 12.1 10.1
Glove 42.7 83.9 21.0 23.1 30.0 72.8 20.8 23.7 58.2 26.2 14.5 14.5 9.6
Glovepysc 43.6 81.9 23.3 25.7 30.8 72.1 19.7 24.4 57.3 28.9 13.7 17.8 23.5



CHAPTER 5

NATURAL LANGUAGE AS INDUCTIVE

BIASES FOR TRACKING

DIALOGUE STATE

From early frame-driven dialogue system GUS [17] to virtual assistants (Alexa, Siri, and

Google Assistant et al.), frame-based dialogue state tracking has long been studied to meet

various challenges. In particular, how to support an ever-increasing number of services

and APIs spanning multiple domains has been a focal point in recent years, evidenced by

multidomain dialogue modeling [19, 204, 205] and transferable dialogue state tracking to

unseen intent/slots [206, 207, 208].

As shown in Figure 5.1, the intent classification task is to understand what the user is

trying to accomplish. Booking a flight, Finding a Movie, or booking a hotel. While the

slot filling task to extract the particular slots and fillers that the user intends the system to

understand from their utterance with respect to their intent. As shown in Figure 5.1, bolded

text is the evidence for different slot values. For example, “economic" implies the value

of the slot seat class, and “June 10" indicates the departure time. In Figure 5.1, two flight

services present two different ontologies for the same domain task of booking a flight. For

the dialogue presented in the center of the figure, the two services will produce different

dialogue states for each user dialogue turn and request different commands for downsteam

information retrieval components. When there is a new flight booking service, then there

will be new ontology for the new domain. Hence, even if it shares a lot of overlapping

functionalities with the previous two flight services, we still need to annotate new data

for the new service and retraining the new model on the newly annotated data. Such

reannotating and retraining on new services are costly.

Recently, Rastogi et al. [209] proposed a new paradigm called schema-guided dialogue

for transferable dialogue state tracking by using natural language description to define a dy-
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namic set of service schemata. As shown in Figure 5.2, the primary motivation is that these

descriptions can offer effective knowledge sharing across different services, i.e., connecting

semantically similar concepts across heterogeneous APIs, thus allowing a unified model

to handle unseen services and APIs. With the publicly available schema-guided dialogue

dataset (SG-DST henceforward) as a testbed, they organized a state tracking shared task

composed of four subtasks: intent classfication (INTENT), requested slot identification (REQ),

categorical slot labeling (CAT), and noncategorical slot labeling (NONCAT) [210]. Many

participants achieved promising performance by exploiting the schema description for

dialogue modeling, especially on unseen services.

Despite the novel approach and promising results, current schema-guided dialogue state

tracking task only evaluates on a single dataset with limited variation in schema definition.

It is unknown how this paradigm generalizes to other datasets and other different styles

of descriptions. In this chapter, we focus our investigation on the study of three aspects

in schema-guided dialogue state tracking: 1 (1) schema encoding model architectures

(2) supplementary training on intermediate tasks (3) various styles for schema description.

To make a more general discussion on the schema-guided dialogue state tracking, we

perform extensive empirical studies on both SG-DST and MULTIWOZ 2.2 datasets.

In summary, besides the independent factorization and the attention mechansiam in pre-

vious chapters, we show that natural language description can further offer discriminative

features to our factor modelling. Esepcially, these descriptions can connect semantically

similar concepts across heterogeneous APIs, thus allowing a unified model to handle unseen

services and APIs in data-poor cases. Our contributions include:

• A comparative study on schema encoding architectures, suggesting a partial-attention

encoder for good balance between inference speed and accuracy.

• An experimental study of supplementary training on schema-guided dialogue state

tracking, via intermediate tasks including natural language inference and question

answering.

1Adapted with permission from Cao and Zhang [211] published under a Creative Commons Attribution 4.0
International License.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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• An in-depth analysis of different schema description styles on a new suite of bench-

marking datasets with variations in schema description for both SG-DST and MULTI-

WOZ 2.2.

5.1 Independent Factorization for Dialogue
State Tracking

A classic dialogue state tracker predicts a dialogue state frame at each user turn given

the dialogue history and predefined domain ontology. As shown in Figure 5.2, the key

difference between schema-guided dialogue state tracking and the classic paradigm is the

newly added natural language descriptions. Beyond the classic independent factorization,

we also add a natural language description to describe each output labels. Hence, the

independent factorization for schema-guided dialogue state tracking can be represented

as Equation 5.1. Instead of using the label of decomposed part yc only, we also use the

natural language description of yc.

E(x, y) = ∑
c∈C

E(x, yc) = ∑
c∈C

E(x, a(yc), desc(yc)) (5.1)

In this section, we will analyze the task structure of dialogue state tracking and the

design for independent factorization. First, we will examine the decomposition of dialogue

state, and split the dialogue state tracking into four independent subtasks. In addition to

the output decomposition, we propose to add a natural language description for each part

of the output label to support unseen new services. We introduce the schema components

in schema-guided dialogue state tracking. Then, we show how each output part can be

derived from the input decomposition. Finally, we outline the research questions in our

paper and address each of them in the rest sections of this chapter.

5.1.1 Output Decomposition: Four Subtasks

As shown in Figure 5.2, the dialogue state for each service consists of 3 parts: active

intent, requested slots, user goals (slot values). Without loss of generality, for both SG-DST

and MULTIWOZ 2.2 datasets, we divide their slots into categorical and noncategorical

slots by following previous study on dual-strategies [212]. Thus to fill the dialogue state

frame for each user turn, we solve four independent subtasks: intent classification (INTENT),

requested slot identification (REQ), categorical slot labeling (CAT), and noncategorical slot
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labeling (NONCAT).

Beyond the independent factorization of 4 subtasks, we also consider describing each

decomposed intent/slot label with natural language. By using natural language description

to define a dynamic set of service schema. As shown in Figure 5.2, we hope these

descriptions can connect semantically similar concepts across heterogeneous APIs, thus

allowing a unified model to handle unseen services and APIs. Hence, in this independent

factorization, we require matching the current dialogue history with candidate schema

descriptions for each subtask and multiple times. Such matches are computation-heavy,

which raises new challenges to our modeling.

Figure 5.2 shows three main schema components: service, intent, slot. For each intent,

the schema also describes optional or required slots for it. For each slot, there are flags

indicating whether it is categorical or not. Categorical means a set of predefined candidate

values (i.e., boolean, numeric or text). For instance, “has_live_music” in Figure 5.2 is a

categorical slot with boolean values. Noncategorical, on the other hand, means the slot

values are filled from the string spans in the dialogue history.

5.1.2 Input Decomposition and Alignments Discovery:
Attention Mechanism

For lexical-anchoring representations, the input sentence is decomposed exclustively

into tokens and special entities. For phrasal-anchoring representations, the input sentence

is decomposed into nested phrases which forms a tree structure. For sentential-anchoring

representsions, we show that the input dialogue are naturally decomposed into a sliding

dialogue history window. The input decomposition for dialogue state tracking is the same as

sentential-anchoring MISC prediction tasks. Because for both MISC prediction and dialogue

state tracking tasks, we cannot simply find relevant parts to predict the intent and slots,

which requires jointly considering the current dialogue utterance and the previous dialogue

history. Hence, due to the success of attention mechanisms in the MISC prediction, we also

use the attention mechanism to discover the more detailed relevant parts for our dialogue

state tracking. We ground our study on the pretrained transformer model: BERT [39].

BERT uses the self-attention mechanism to dynamically learn the relevant parts from a

large amount of text, which has been shown great success for many NLP tasks, including

dialogue state tracking [213, 214].
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5.1.3 New Questions

These added schema descriptions pose the following three new questions. We discuss

each of them in the following sections.

• How should dialogue and schema be encoded?(Section 5.3)

• How do different supplementary trainings impact each subtask? (Section 5.4)

• How do different description styles impact the state tracking performance? (Sec-

tion 5.5)

5.2 Datasets and Model Setup
To the best of our knowledge, at the time of our study, SG-DST and MULTIWOZ 2.2 are

the only two publicly available corpus for schema-guided dialogue study. We choose

both of them for our study. In this section, we first introduce these two representative

datasets, then we discuss the generalizibility in domain diversity, function overlapping,

data collecting methods. For easier reference, Table 5.1 summarizes the differences between

the two datasets. refrence.

5.2.1 Schema-Guided Dialogue Dataset

SG-DST dataset 2 is especially designed as a test-bed for schema-guided dialogue,

which contains well-designed heterogeneous APIs with overlapping functionalities between

services [209]. In DSTC8 [210], SG-DST was introduced as the standard benchmark dataset

for schema-guided dialogue research. SG-DST covers 20 domains, 88 intents, 365 slots. 3

However, previous research are mainly conducted based on this single dataset and the

provided single description style. In this paper, we further extended this dataset with

other benchmarking description styles as shown in Section 5.5, and then we perform both

homogenous and hetergenous evalution on it.

2https://github.com/google-research-datasets/dstc8-schema-guided-dialogue

3Please refer to Rastogi et al. [209] for more details.

https://github.com/google-research-datasets/dstc8-schema-guided-dialogue
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5.2.2 Remixed MultiWOZ 2.2 Dataset

To eliminate potential bias from the above single SG-DST dataset, we further add

MULTIWOZ 2.2 [215] to our study.

To evaluate performance on seen/unseen services with MultiWOZ, we remix the

MULTIWOZ 2.2 dataset to include as seen services dialogues related to restaurant, attraction

and train during training, and eliminate slots from other domains/services from training

split. For dev, we add two new domains hotel and taxi as unseen services. For test, we add

all remaining domains as unseen, including those that have minimum overlap with seen

services, such as hospital, police, bus. The statistics are as shown in Table 5.2.

Among various extended versions for MultiWOZ dataset [2.0-2.3, 19, 215, 216, 217] ,

besides rectifying the annotation errors, MULTIWOZ 2.2 also introduced the schema-guided

annotations, which covers 8 domains, 19 intents, 36 slots. To evaluate performance on

seen/unseen services with MultiWOZ, we remix the MULTIWOZ 2.2 dataset to include

as seen services dialogues related to restaurant, attraction and train during training, and

eliminate slots from other domains/services from training split. For dev, we add two new

domains hotel and taxi as unseen services. For test, we add all remaining domains as unseen,

including those that have minimum overlap with seen services, such as hospital, police, bus.

The statistics of data splits are shown in Table 5.2. Note that this data split is different

from the previous work on zero-shot MultiWOZ DST which takes a leave-one-out approach

in Wu et al. [207]. By remixing the data in the way described above, we can evaluate the

zero-shot performance on MultiWOZ in a way largely compatible with SG-DST.

5.2.3 Discussion on Datasets

First, the two datasets cover diverse domains. MULTIWOZ 2.2 covers various possible

dialogue scenarios ranging from requesting basic information about attractions through

booking a hotel room or travelling between cities. While SG-DST covers more domains,

such as ‘Payments’, ‘Calender’, ‘DoctorServices’ and so on.

Second, they include different levels of overlapping functionalities. SG-DST allows

frequent function overlapping between multiple services, within the same domain (e.g.,

BookOneWayTicket v.s. BookRoundTripTicket), or across different domains (BusTicket v.s.

TrainTicket). However, the overlapping in MULTIWOZ 2.2 only exists across different
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domains, e.g., ‘destination’, ‘leaveat’ slots for Taxi and Bus services, ‘pricerange’, ‘bookday’

for Restaurant and Hotel services.

Third, they are collected by two different approaches which are commonly used in

dialogue collecting. SG-DST is firstly collected by machine-to-machine self-play [M2M, 218]

with dialogue flows as seeds, then paraphrased by crowd-workers. While MULTIWOZ

2.2 are human-to-human dialogues [H2H, 219], which are collected with the Wizard-of-Oz

approach.

We summarize the above discussion in Table 5.1. We believe that results derived from

these two representative datasets can guide future research in schema guided dialogue.

5.2.4 Experiment Setup

All models are based on BERT-base-cased model with 2 V100 GPUs (with 16GB GPU

RAM each). We train each models for maximum 10 epoch, by using AdamW to schedule

the learning rate with a warm-up portion of 0.1. During training, we evaluate checkpoints

per 3000 steps on dev splits, and select the model with best performance on dev split on all

seen and unseen services. In our experiments, our model achieves the best performance

on around 2-4 epochs on INTENT, REQ. and CAT, while NONCAT needs 5-8 epochs to get

the best performance. For all subtasks, as we model all of them as sentence pair encoding

during training, we use batch size as 16 for each GPU, and gradient accumulate for 8 steps,

in total 256 batch size on 2 GPUs.

5.3 Dialogue and Schema Modeling
In this section, we focus on the model architecture for matching dialogue history with

schema descriptions using pretrained BERT [39]. 4 We first compare different encoder

architectures in Section 5.3.1. Then for each of four subtasks, we show the classification

head (Section 5.3.2) and the results (Section 5.3.3)

5.3.1 Encoder Architectures

To support four subtasks, we first extend Dual-Encoder and Cross-Encoder to support

both sentence-level matching and token-level prediction. Then we propose an additional

4We use BERT-base-cased for all main experiments. Other pretrained language models can be easily adapted
to our study.
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Fusion-Encoder strategy to get faster inference without sacrificing much accuracy. We

summarize different architectures in Figure 5.3.

5.3.1.1 Dual-Encoder

It consists of two separate BERTs to encode dialogue history and schema descriptions,

respectively, as Figure 5.3 (a). We follow the setting in the official baseline provided by

DSTC8 Track4 [210]. We first use a fixed BERT to encode the schema description once and

cached the encoded schema CLSS. Then for sentence-level representation, we concatenate

dialogue history representation CLSD and candidate schema representation CLSS as the

whole sentence-level representation for the pair, denoted as CLSDE. For token-level

representation, we concatenate the candidate schema CLSS with each token embedding

in the dialogue history, denoted as TOKDE. 5 Because the candidate schema embeddings

are encoded independently from the dialogue context, they can be precomputed once and

cached for fast inference.

5.3.1.2 Cross-Encoder

Another popular architecture as Figure 5.3 (b) is Cross-Encoder, which concatenates the

dialogue and schema as a single input, and encodes jointly with a single self-attentive

encoder spanning over the two segments. When using BERT to encode the concatenated

sentence pair, it performs full (cross) self-attention in every transformer layers, thus offer

rich interaction between the dialogue and schema. BERT naturally produces a summarized

representation with [CLS] embedding CLSCE and each schema-attended dialogue token

embeddings TOKCE. Since the dialogue and schema encoding always depend on each

other, it requires recomputing dialogue and schema encoding for multiple times, thus much

slower in inference.

5.3.1.3 Fusion-Encoder

In Figure 5.3 (c), similar to Dual-Encoder, Fusion-Encoder also encodes the schema

independently with a fixed BERT and finetuning another BERT for dialogue encoding.

However, instead of caching a single [CLS] vector for schema representation, it caches

5A schema-aware dialogue token embedding can also be computed by attention or other method for
span-based detection tasks [214, 220].
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all token representation for the schema including the [CLS] token. What’s more, to

integrate the sequences dialogue token representation with schema token representation,

an extra stack of transformer layers are added on top to allow token-level fusion via

self-attention, similar to Cross-Encoder. The top transformer layers will produce embeddings

for each token TOKFE including a schema-attended CLSFE of the input [CLS] from the

dialogue history. With cached schema token-level representations, it can efficiently produce

schema-aware sentence- and token-level representation for each dialogue-schema pairs.

5.3.2 Models for Factorized Subtasks

All the above 3 encoders will produce both sentence- and token-level representations for

a given sentence pair. In this section, we abstract them as two representations CLS and TOK,

and present the universal classification heads to make decisions for each subtask.

5.3.2.1 Active Intent

To decide the intent for current dialogue turn, we match current dialogue history D

with each intent descriptions I0...Ik. For each dialogue-intent pair (D, Ik), we project the

final sentence-level CLS representation to a single number Pactive
Ik

with a linear layer follows

a sigmoid function. We predict "NONE" if the Pactive
Ik

of all intents are less than a threshold

0.5, which means no intent is active. Otherwise, we predict the intent with largest Pactive
Ik

.

We predict the intent for each turn independently without considering the prediction on

previous turns.

5.3.2.2 Requested Slot

As in Figure 5.2, mulitple requested slots can exist in a single turn. We use the same

strategy as in active intent prediction to predict a number Pactive
req . However, to support the

multiple requested slots prediction. We predict all the requested slots with Pactive
req > 0.5.

5.3.2.3 Categorical Slot

Categorical slots have a set of candidate values. We cannot predict unseen values

via n-way classification. Instead, we do binary classification on each candidate value.

Besides, rather than directly matching with values, we also need to check that whether the

corresponding slot has been activated. For Cross-Encoder and Fusion-Encoder, we use typical
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two-stage state tracking to incrementally build the state: Step 1. Using CLS to predict the

slot status as none, dontcare or active. When the status is active, we use the predicted slot

value; Otherwise, it will be assigned to dontcare meaning no user preference for this slot, or

none meaning no value update for the slot in current turn; Step 2. If Step 1 is active, we match

the dialogue history with each value and select the most related value by ranking. We train

on cross entropy loss. Two-stage strategy is efficient for Dual-Encoder and Fusion-Encoder,

where cached schema can be reused, and get efficiently ranked globally in a single batch.

However, it is not scalable for Cross-Encoder, especially for large number of candidate values

in MultiWOZ dataset. Hence, during training, we only use a binary cross-entropy for each

single value and postpone the ranking only to the inference time.

5.3.2.4 Noncategorical Slot

The slot status prediction for noncategorical slot use the same two-stage strategy. Besides

that, we use the token representation of dialogue history TOK to compute two softmax

scores f i
start and f i

end for each token i, to represent the score of predicting the token as start

and end position, respectively. Finally, we find the valid span with maximum sum of the

start and end scores.

5.3.3 Experiments on Encoder Comparison

To fairly compare all three models, we follow the same settings of schema input as

in Table 5.3. We trained separate models for SG-DST and the remixed MultiWOZ datasets

for all the experiments according to the detailed setup in Section 5.2.4 Because there are

very few intent and requested slots in MULTIWOZ 2.2 dataset, we ignore the intent and

requested slots tasks for MULTIWOZ 2.2 in this dissertation.

5.3.3.1 Comparison on Accuracy

As shown in Table 5.4, Cross-Encoder performs the best over all subtasks. Our Fusion-

Encoder with partial attention outperforms the Dual-Encoder by a large margin, epsecially on

categorical and noncategorical slots predictions. Additionally, on seen services, we found

that Dual-Encoder and Fusion-Encoder can perform as good as Cross-Encoder on INTENT and

REQ tasks. However, they cannot generalize well on unseen services as Cross-Encoder.
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5.3.3.2 Comparison on Inference Speed

To test the inference speed, we conduct all the experiments with a maximum affordable

batch size to fully exploit 2 V100 GPUs (with 16GB GPU RAM each). During training, we

log the inference time of each evaluation on dev set. Both Dual-Encoder and Fusion-Encoder

can do joint inference across 4 subtasks to obtain an integral dialogue state for a dialogue

turn example. Dual-Encoder achieves the highest inference speed of 603.35 examples per

GPU second, because the encoding for dialogue and schema are fully separated. A dialogue

only needed to be encoded for once during the inference of a dialogue state example while

the schema are precomputed once. However, for Cross-Encoder, to predict a dialogue state

for a single turn, it need to encode more than 300 sentence pairs in a batch, thus only

processes 4.75 examples per GPU second. Fusion-Encoder performs one time encoding on

dialogue history, but it needs to jointly encode the same amount of dialogue-schema pair ws

Cross-Encoder, instead, however, with a two-layer transformer encoder. Overall it achieves

10.54 examples per GPU second, which is 2.2x faster than Cross-Encoder. With regarding to

the accuracy in Table 5.4, Fusion-Encoder performs much better than Dual-Encoder, especially

on unseen services.

5.4 Supplementary Training
Besides the pretrain-fintune framework used in Section 5.3, Phang et al. [221] propose to

add a supplementary training phase on an intermediate task after the pretraining, but before

finetuning on target task. It shows significant improvement on the target tasks. Moreover,

large amount pretrained and finetuned transformer-based models are publicly accessible,

and well-organized in model hubs for sharing, training and testing. 6 Given the new task

of schema-guided dialogue state tracking, in this section, we study our four subtasks with

different intermediate tasks for supplementary training. However, how to choose those

intermediate tasks is a challenge problem. Our inductive biases on choosing intermediate

tasks are: Intermediate tasks that sharing similar structures with downsteam tasks may help the

supplementary training. Hence, for natural language description modelling, we will first

show the similarity between our proposed Natural Language Inference and Question

6For example, Huggingface(https://huggingface.co/models) and ParlAL(https://parl.ai/docs/zoo.
html), etc.

https://huggingface.co/models
https://parl.ai/docs/zoo.html
https://parl.ai/docs/zoo.html
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Ansering with our four subtasks, then analyze the results on how they performed.

5.4.1 Intermediate Tasks

As described in § 5.3.2, all our 4 subtasks take a pair of dialogue and schema description

as input, and predict with the summerized sentence-pair CLS representation. While

NONCAT also requires span-based detection such as question answering. Hence, they

share the similar problem structure with the following sentence-pair encoding tasks.

• Natural Language Inference: Given a hypothesis/premise sentence pair, natural lan-

guage inference is a task to determine whether a hypothesis is entailed, contradicted

or neutral given that premise.

• Question Answering: Given a passage/question pairs, the task is to extract the

span-based answer in the passage.

Hence, when finetuning BERT on our subtaks, instead of directly using the originally

pretrained BERT, we use the BERT finetuned on the above two tasks for further finetuning.

Due to better peformance of Cross-Encoder in Section 5.3.2, we directly use the finetuned

Cross-Encoder version of BERT models on SNLI and SQuAD2.0 dataset from Huggingface

model hub. We add extra speaker tokens [user:] and [system:] into the vocabulary for

encoding the multiturn dialogue histories.

5.4.2 Results on Supplementary Training

Table 5.5 and Table 5.6 shows the performances gain when finetuning 4 subtasks based

on models with the above SNLI and SQuAD2.0 supplementary training.

We mainly find that SNLI helps on INTENT task, SQuAD2 mainly helps on NONCAT task,

while neither of them helps much on CAT task. Recently, Namazifar et al. [222] also found

that when modeling dialogue understanding as question answering task, it can benefit from

a supplementary training on SQuAD2 dataset, especially on few-shot scenarios, which is a

similar findings as our NONCAT task. Result difference on REQ task is minor, because it is

a relatively easy task, adding any supplementary training did n’t help much. Moreover,

for CAT task, the sequence 2 of the input pair is the slot description with a categorical slot

value, thus the meaning overlapping between the full dialogue history and the slot/value is

much smaller than SNLI tasks. On the other side, CLS token in SQuAD BERT is finetuned
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for null predictions via start and end token classifers, which is different from the the single

CLS classifer in CAT task.

5.5 Impact of Description Styles
Previous work on schema-guided dialogue [210] are only based on the provided

descriptions in SG-DST dataset. Recent work on modeling dialogue state tracking as

reading comprehension [223] only formulate the descriptions as simple question format

with existing intent/slot names, it is unknown how it performs when compared to other

description styles. Moreover, they only conduct homogeneous evaluation where training

and test data share the same description style. In this section, We also investigate how a

model trained on one description style will perform on other different styles, especially in a

scenario where chat-bot developers may design their own descriptions. We first introduce

different styles of descriptions in our study, and then we train models on each description

style and evaluate on tests with corresponding homogeneous and heterogeneous styles of

descriptions. Given the best performance of Cross-Encoder shown in the previous section

and its popularity in DSTC8 challenges, we adopt it as our model architecture in this section.

5.5.1 Benchmarking Styles and Experiment Setup

For each intent/slot, we describe their functionalities by the following different descrip-

tions styles:

• IDENTIFER: This is the least informative case of name-based description: we only

use meaningless intent/slot identifiers, e.g., Intent_1, Slot_2. It means we don’t use

description from any schema component. We want to investigate how a simple

identifier-based description performs in schema-guided dialogue modeling, and the

performance lower-bound on transferring to unseen services.

• NAMEONLY: Using the original intent/slot names in SG-DST and MULTIWOZ

2.2 datasets as descriptions, to show whether name is enough for schema-guided

dialogue modeling.

• Q-NAME: This is corresponding to previous work by Gao et al. [223]. For each

intent/slot, it generate a question to inquiry about the intent and slot value of the
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dialogue. For each slot, it simply follows the template ’What is the value for slot i?’.

Besides that, our work also extend the intent description by following the template

“Is the user intending to intent j ".

• ORIG: The original descriptions in SG-DST and MULTIWOZ 2.2 datasets.

• Q-ORIG: Different from the Q-NAME, firstly it is based on the original descriptions;

secondly, rather than always use the “what is" template to inquiry the intent/slot

value, We add “what", “which", “how many" or “when" depending on the entity type

required for the slot. Same as Q-NAME, we just add prefixes as “Is the user intending

to. . . ” in front of the original description. In a sum, this description is just adding

question format to original description. The motivation of this description is to see

whether the question format is helpful or not for schema-guided dialogue modeling.

To test the model robustness, we also create two paraphrased versions NAME-PARA and

ORIG-PARA for NAMEONLY and ORIG, respectively. We first use nematus [224] to auto-

matically paraphrase the description with back translation, from English to Chinese and

then translate back, then we manually check the paraphrase to retain the main meaning.

Table 5.7 shows examples for different styles of schema descriptions.

Unlike the composition used in Table 5.3, we don’t use the service description to avoid

its impact. For each style, we train separate models on 4 subtasks, then we evaluate

them on different target styles in both homogeneous (Section 5.5.2) and heterogeneous

settings (Section 5.5.3)

5.5.2 Homogeneous Evaluation

In this section, Table 5.8 summarizes the performance for homogeneous evaluation,

while Table 5.9 shows how the question style description can benefit from SQuAD2

finetuning. Then we also conduct heterogeneous evaluation on the other styles as shown in

Table 5.10. 7

7We do not consider the meaningless IDENTIFER style due to its bad performance.
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5.5.2.1 Is Name-Based Description Enough?

As shown in Table 5.8, IDENTIFER is the worst case of using name description, its ex-

tremely bad performance indicates name-based description can be very unstable. However,

we found that simple meaningful name-based description actually can perform the best in

INTENT and REQ task, and they perform worse on CAT and NONCAT tasks comparing to

the bottom two rich descriptions. 8 After careful analysis on the intents in SG-DST datasets,

we found that most services only contains two kinds of intents, an information retrieval

intent with a name prefix “Find-,” “Get-,” and “Search-”; another transaction intent like

“Add-,” “Reserve-,” or “Buy-.” Interestingly, we found that all the intent names in the original

schema-guided dataset strictly follows an action-object template with a composition of

words without abbreviation, such as “FindEvents,” “BuyEventTickets.” This simple name

template is good enough to describe the core functionality of an intent in SG-DST dataset. 9

Additionally, REQ is a relaitively simper task, requesting information are related to specifial

attributes, such as “has_live_music,” “has_wifi,” where keywords co-occured in the slot name

and in the user utterance, hence rich explanation cannot help further. On the other side,

rich descriptions are more necessary for CAT and NONCAT task. Because in many cases,

slot names are too simple to represent the functionalities behind it, for example, slot name

“passengers” cannot fully represent the meaning “number of passengers in the ticket booking.”

5.5.2.2 Does Question Format Help?

As shown in Table 5.8, when comparing row Q-ORIG v.s. ORIG, we found extra question

format can improve the performance on CAT and NONCAT task on both SG-DST and

MULTIWOZ 2.2 datasets, but not for INTENT and REQ tasks. We believe that question

format helps the model to focus more on specific entities in the dialogue history. However,

when adding a simple question pattern to NAMEONLY, comparing row Q-NAME and

NAMEONLY, there is no consistent improvement on both of the two datasets. Further more,

we are curious about whether BERT finetuned on SQuAD2 (SQuAD2-BERT) can further help

on the question format. Because NONCAT are similar with span-based question answering,

8Only exception happens in CAT on MULTIWOZ 2.2. When creating MULTIWOZ 2.2 [215], the slots with
less than 50 different slot values are classified as categorical slots, which leads to inconsistencies.

9This action-object template has also been found efficient for open domain intent induction task [e.g., OPINE
225].
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we focus on NONCAT here. Table 5.9 shows that, after applying the supplementary training

on SQuAD2 (Section 5.4), almost all models get improved on unseen splits however slightly

dropped on seen services. Moreover, comparing to Q-NAME, Q-ORIG is more similar to the

natural questions in the SQuAD2, we obverse that Q-ORIG gains more than Q-NAME from

pretrained model on SQuAD2.

5.5.3 Heterogeneous Evaluation

In this subsection, we first simulate a scenario when there is no recommended de-

scription style for the future unseen services. Hence, unseen services can follow any

description style in our case. We average the evaluation performance on three other

descriptions and summarized in Table 5.10. The ∆ column shows the performance change

compared to the homogeneous performance. It is not surprising that almost all models

perform worse on heterogeneous styles than on homogeneous styles due to different

distribution between training and evaluation. The bold number shows the best average

performance on heterogeneous evaluation for each subtask. The trends are similar with the

analysis in homogeneous evaluation (Section 5.5.2), the name-based descriptions perform

better than other rich descriptions on intent classification tasks. While on other tasks, the

ORIG description performs more robust, especially on NONCAT task.

Furthermore, we consider another scenario where fixed description convention such

as NAMEONLY and ORIG are suggested to developers, they must obey the basic style

convention but still can freely use their own words, such as abbreviation, synonyms, adding

extra modifiers. We train each model on NAMEONLY and ORIG, then evaluate on the

corresponding paraphrased version, respectively. In the last two rows of Table 5.10, the

column ‘para’ shows performance on paraphrased schema, while ∆ shows the performance

change compared to the homogeneous evaluation. ORIG still performs more robust than

NAMEONLY when schema descriptions get paraphrased on unseen services.

5.6 Related Work
Our work is related to three lines of research: multisentence encoding, multidomain

and transferable dialogue state tracking. However, our focus is on the comparative study

of different encoder architectures, supplementary training, and schema description style
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variation. Thus we adopt existing strategies from multidomain dialogue state tracking.

5.6.1 Multisentence Encoder Strategies

Similar to the recent study on encoders for response selection and article search tasks Humeau

et al. [220], we also conduct our comparative study on the two typical architectures Cross-

Encoder [167, 226] and Dual-Encoder [227, 228]. However, they only focus on sentence-level

matching tasks. All subtasks in our case require sentence-level matching between dialogue

context and each schema, while the noncategorical slot filling task also needs to produce a

sequence of token-level representation for span detection. Hence, we study multisentence

encoding for both sentence-level and token-level tasks. Moreover, to share the schema

encoding across subtasks and turns, we also introduce a simple Fusion-Encoder by caching

schema token embeddings in Section 5.3.1, which improves efficiency without sacrificing

much accuracy.

5.6.2 Multidomain Dialogue State Tracking

Recent research on multidomain dialogue system have been largely driven by the

release of large-scale multidomain dialogue datasets, such as MultiWOZ [19], M2M [205],

accompanied by studies on key issues such as in/cross-domain carry-over [229]. In

this paper, our goal is to understanding the design choice for schema descriptions in

dialogue state tracking. Thus we simply follow the in-domain cross-over strategies used in

TRADE [207]. Additionally, explicit cross-domain carryover [230] is difficult to generalize

to new services and unknown carryover links. We use longer dialogue history to inform

the model on the dialogue in the previous service. This simplified strategy does impact our

model performance negatively in comparison to a well-designed dialogue state tracking

model on seen domains. However, it helps reduce the complexity of matching extra slot

descriptions for cross-service carryover. We leave the further discussion for future work.

5.6.3 Transferable Dialogue State Tracking

Another line of research focuses on how to build a transferable dialogue system that

is easily scalable to newly added intents and slots. This covers diverse topics including,

e.g., resolving lexical/morphological variabilities by symbolic delexicalization-based meth-

ods [231, 232], neural belief tracking [206], generative dialogue state tracking [208, 233],
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modeling DST as a question answering task [212, 223, 234, 235]. Our work is similar

with the last class. However, we further investigate whether the DST can benefit from

NLP tasks other than question answering. Furthermore, without rich description for

the service/intent/slot in the schema, previous works mainly focus on simple format

on question answering scenarios, such as domain-slot-type compounded names (e.g.,

“restaurant-food"), or simple question template “What is the value for slot i?". We incorporate

different description styles into a comparative discussion in Section 5.5.1.

5.7 Chapter Summary
In this chapter, beyond the independent factorization and the attention mechansiam in

previous sentential anchroing modelling, we show that natural language description can

further offer discriminative features to our factor modelling. Esepcially, these descriptions

can offer effective knowledge sharing across different services, e.g., connecting semantically

similar concepts across heterogeneous APIs, thus allowing a unified model to handle unseen

services and APIs in data-poor cases.

We studied three questions on schema-guided dialogue state tracking: encoder architec-

tures, impact of supplementary training, and effective schema description styles. The main

findings are as follows:

By caching the token embedding instead of the single CLS embedding, a simple partial-

attention Fusion-Encoder can achieve much better performance than Dual-Encoder, while

still infers two times faster than Cross-Encoder. We quantified the gain via supplementary

training on two intermediate tasks. By carefully choosing representative description styles

according to recent works, we are the first of doing both homogeneous/heterogeneous

evaluations for different description style in schema-guided dialogue. The results show

that simple name-based descriptions perform well on INTENT and REQ tasks. On the

other side, NONCAT tasks benefits from richer styles of descriptions. All tasks suffer from

inconsistencies in description style between training and test, though to varying degrees.

Our study are mainly conducted on two datasets: SG-DST and MULTIWOZ 2.2, while

the speed-accuracy balance of encoder architectures and the findings in supplementary

training are expected to be dataset-agnostic, because they depend more on the nature of the

subtasks than the datasets. Based on our proposed benchmarking descriptions suite, the
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homogeneous and heterogeneous evaluation has shed the light on the robustness of cross-

style schema-guided dialogue modeling, we believe our study will provide useful insights

for future research. Natural language description can also be used for other tasks where the

natural language can be used to describe the overlapping functionalities and differences.

However, how to efficient design the natural language description will be a challenge

problem, recent ideas on prompt-tuning may potentially help in the future [236, 237].
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Figure 5.1: Different flight service ontologies for dialogue state tracking.
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Figure 5.2: An example dialogue from Restaurant_1 service, along with its service/inten-
t/slot descriptions and dialogue state representation.
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Figure 5.3: Three kinds encoders for schema encoding: Dual-Encoder, Cross-
Encoder, and Fusion-Encoder. Shaded block will be cached during training.
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Table 5.1: Summary of characteristics of SG-DST and MULTIWOZ 2.2 datasets, in domain
diversity, function overlap, data collecting methods.

Datasets Splits Dialogue
Domains Zero-shot Zero-shot Function Collecting
(Services) Domains Services Overlapp Method

SG-DST

Train 16142 16(26) - - Across/
M2MDev 2482 16(17) 1 8 Within

Test 4201 18(21) 3 11 Domain

MULTIWOZ
2.2

Train 9617 3(3) - - Across
H2HDev 2455 5(5) 2 2 Domain

Test 2969 8(8) 5 5

Table 5.2: The total number of dialogues and turns related to each domain in train, dev
and test split of MULTIWOZ 2.2.

Domain
#dialogues/#turns

train dev test
restaurant 3900 37953 458 6979 451 7104
attraction 2716 28632 405 6198 400 6290

train 3001 29646 481 5897 491 6150
hotel 0 0 737 8509 718 7911
taxi 0 0 374 2692 364 2659

hospital 0 0 0 0 287 766
police 0 0 0 0 252 475

bus 0 0 0 0 6 132

Table 5.3: Schema description input used for different tasks to compare Dual-Encoder,
Cross-Encoder, and Fusion-Encoder. In Appendix B, we also studies other compositions
of description input. We found that service description will not help for INTENT, REQ

and CAT tasks, while the impact on NONCAT task also varies from SG-DST and MULTIWOZ
2.2 dataset.

Intent service description, intent description
Req service description, slot description
Cat slot description, cat value
NonCat service description, slot description
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Table 5.4: Test set results on SG-DST and MULTIWOZ 2.2. The Dual-Encoder model is a
reimplementation of official DSTC8 baseline from Rastogi et al. [209]. Other models are
trained with the architecture described in Section 5.3.2.

Method/Task
SG-DST MULTIWOZ 2.2

Acc F1 Joint Acc Joint Acc
Intent Req Cat NonCat All Cat NonCat All

Seen Services
Dual-Encoder 94.51 99.62 87.92 47.77 43.20 79.20 79.34 65.64
Fusion-Encoder 94.90 99.69 88.94 48.78 58.52 81.37 80.58 67.43
Cross-Encoder 95.55 99.59 93.68 91.85 87.58 85.99 81.02 71.93

Unseen Services
Dual-Encoder 89.73 95.20 42.44 31.62 19.51 56.92 50.82 31.83
Fusion-Encoder 90.47 95.95 48.79 35.91 22.85 57.01 52.23 33.64
Cross-Encoder 93.84 98.26 71.55 74.13 54.54 59.85 59.62 38.46

Table 5.5: Relative performance improvement of different supplementary training on
SG-DST dataset.

SG-DST

intent req cat noncat
all seen unseen all seen unseen all seen unseen all seen unseen

∆SNLI +0.51 +0.02 +0.68 -0.19 +0.38 -0.38 -1.63 -2.87 -1.23 -4.7 -0.1 -6.25
∆SQuAD -1.81 -0.17 -1.32 -0.25 -0.01 -0.33 -2.87 -3.02 -5.17 +1.99 -1.79 +3.25

Table 5.6: Relative performance improvement of different supplementary training on
MULTIWOZ 2.2 dataset.

MULTIWOZ 2.2
cat noncat

all seen unseen all seen unseen
∆SNLI +2.05 +0.6 –0.7 +3.64 +1.05 +4.84

∆SQuAD +0.04 -0.71 +0.41 +1.93 -2.21 +4.27
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Table 5.7: Different extensions of schema descriptions.

Style Intent Description Slot Description
IDENTIFER intent_1 slot_4
NAMEONLY CheckBalance account_type
Q-NAME Is the user intending to CheckBalance? What is the value of

account_type ?
ORIG Check the amount of money in a user’s

bank account
The account type of
the user

Q-ORIG Does the user want to check the amount
of money in the bank account ?

What is the account
type of the user ?

NAME-PARA CheckAccountBalance user_account_type
ORIG-PARA Check the balance of the user’s bank ac-

count
The type of the user
account

Table 5.8: Homogeneous evaluation results of different description style on SG-DST dataset
and MULTIWOZ 2.2 datasets. The middle horizontal line separate the two name-based
descriptions and two rich descriptions in our settings. All numbers in the table are mixed
performance including both seen and unseen services.

Style\Task
SG-DST MULTIWOZ 2.2

Intent Req Cat NonCat Cat NonCat
IDENTIFER 61.16 91.48 62.47 30.19 34.25 52.28

NAMEONLY 94.24 98.84 74.01 75.63 53.72 56.18
Q-NAME 93.31 98.86 74.36 74.86 54.19 56.17

ORIG 93.01 98.55 74.51 75.76 52.19 57.20
Q-ORIG 93.42 98.51 76.64 76.60 53.61 57.80

Table 5.9: Performance changes when using BERT finetuned on SQuAD2 dataset to further
finetuning on our NONCAT task.

Style/Dataset
SG-DST MULTIWOZ 2.2

all seen unseen all seen unseen
ORIG +1.99 -1.79 +3.25 +1.93 -2.21 +4.27

Q-ORIG +6.13 -2.01 +8.84 +1.06 -1.28 +3.06
NAMEONLY -0.45 -1.49 -0.11 +1.75 +0.58 +1.77

Q-NAME +0.05 -2.98 +1.04 -0.04 -0.32 +1.25
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Table 5.10: Results on unseen service with heterogeneous description styles on SG-DST

dataset. More results and qualitative analysis are in Appendix C.

Style\Task
SG-DST

Intent(Acc) Req(F1) Cat(Joint Acc) NonCat(Joint Acc)
mean ∆ mean ∆ mean ∆ mean ∆

NAMEONLY 82.47 -11.47 96.92 -1.64 61.37 -5.54 56.53 -14.68
Q-NAME 93.27 +0.58 97.88 -0.76 68.55 +2.63 62.92 -6.30

ORIG 79.47 -12.70 97.42 -0.74 68.58 -0.3 66.72 -3.11
Q-ORIG 84.57 -8.24 96.70 -1.45 68.40 -2.89 56.17 -15.00

para ∆ para ∆ para ∆ para ∆
NAMEONLY 92.22 -1.74 97.69 -0.87 67.39 -0.7 67.17 -4.04

ORIG 91.54 -0.63 98.42 +0.26 71.74 +2.86 67.68 -2.16



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize our contributions and highlight some open problems,

suggesting possible directions for future research. Fine-grained summerization and discus-

sion about remaining issues about each topic can be found at the end of the corresponding

chapters.

6.1 Research Summary and Contributions
In this dissertation, we claim that by designing structural inductive biases and natural

language as inductive biases, models with naive independent factorization can achieve strong

performance on predicting the natural language structures across multiple broad-coverage

and application-specific representations.

The main contributions of this dissertation are as follows:

1. Based on the assumption of independent factorization and the structural inductive

biases about different anchoring-types, we proposed a unified parsing framework

to support both explicit lexical anchoring (including DELPH-IN MRS Bilexical

Dependencies [DM, 11] and Prague Semantic Dependencies [PSD, 12, 13]), and

implicit lexical anchoring (AMR). For the phrasal-anchoring Universal Conceptual

Cognitive Annotation [UCCA, 10] and Task-oriented Dialogue Parsing [TOP, 53],

according to their similarity to constituency tree structure, we extrapolate the existed

algorithmic inductive bias on tree structure prediction and Cost-augmented CKY

inferece to the new UCCA and TOP parsing tasks. Powered by the above structural

inductive biases, over 16 teams, our parsing system [50] ranked 1st on AMR, 6th in DM,

7th in PSD, 5th on UCCA parsing, and outperform serveral baseline models on TOP parsing.

2. We address the problem of providing real-time guidance to therapists with a dialogue

observer. It decompose the dialogue structure analysis with two independent fac-
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torization tasks and modeling for two speaker seperately: (1) categorizes therapist

and client MI behavioral codes and, (2) forecasts codes for upcoming utterances to

help guide the conversation and potentially alert the therapist. For both tasks, I

studied a hierarchical gated recurrent unit (HGRU) with the word-level attention and

sentence-level attention to distinguish different importance of words and sentences to

our prediction [54]. Our experiments demonstrate that our models can outperform

several baselines for both tasks. We also report the results of a careful analysis that

reveals the impact of the various network design tradeoffs for modeling therapy

dialogue.

3. Natural language can be leveraged as inductive biases to describe the functions of

the intent/slot labels in task-oriented dialogue. We are among the first to use large

pretrained language models on description-based dialogue state tracking, we offer

detailed comparative studies how to transfer inductive biases to new domains and

APIs with overlapping functions and task structures, including encoding strategies,

supplementary pretraining, homogenuous and heterogeneous evalutions.

6.2 Future Work
In this dissertation, by utilizing structural inductive biases and natural language as

inductive biases, we designed effient deep linguistic structured prediction methods with

indepdent factorization. Though these methods achieved better performance on various

broad-coverage and application-specific symbolic representations, there is still room for

further improvment. In this section, we demonstrate the future directions including

extending to other kinds of factorizations beyond independent factorization (Section 6.2.1),

applying to other symbolic representations (Section 6.2.2), enhancing contextualized repre-

sentation (Section 6.2.3), repressenting other kind of biases (Section 6.2.4), and more ways

of learning and transferring the inductive biaes (Section 6.2.5)

6.2.1 Beyond Independent Factorization

This dissertation mainly focuses on independent factorization, which ignores the in-

terdependence between output parts. Our experiments show that the contextualized

representation can capture the interdependence within the input parts; thus, they can
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offer discriminative features to predict each output part independently. However, we

also can extend our work on other factorizations such as auto-regressive factorization, or

arbitrary high order factorizations. In those cases, the output parts will either depend on the

previously predicted output or have other high order dependecies. Take the auto-regressive

factorization as an example, we consider a more broad-coverage construction of output y as

sequential decisions as shown in Equation 6.1.

E(x, y) =
M

∑
j=0

E(yj|x, y<j) (6.1)

In autoregressive factorization, as shown in Figure 6.1, for every step, a new decision yj

will depend on the input x and previous decisions y<j. In this case, the main challenge of

the model is to learn the representation of x and previous sequential decisions y<j, then

make a decision yj based on them. Especially inspired by distributed representation of the

natural language, we also study the distributed representation of the output structures y<j,

and leverage them to guide constrained structured prediction.

6.2.2 Apply to Other Symbolic Representations

As shown in Chapter 3, the above structural inductive bias in lexical, phrasal, and

sentential anchoring can be easily extended to other linguistic structured prediction tasks,

such as coreference resolution, semantic role labeling, where the main task structures has

been studied in our broad-coverage meaning representation parsing. Taking the coreference

resolution tasks as an example, we show how to apply the independent factorization on a

new task in Section 6.2.2.1. Then we show the potential future application on other symbolic

representations in Section 6.2.2.2.

6.2.2.1 Coreference Resolution

Coreference resolution is the task of clustering mentions in text that refer to the same

underlying real-world entities or events. As shown in the left bottom of Figure 1.4, “dog"

and “it" are pointed to the same dog.

First, we consider the output decomposition for coreference resolution task. A classic

problem formula for coreference resolution task is to define a set of antecedent assignments

yi for each of span xi in the given document. The set of possible assignments for each

yi ∈ Φ, 1, ...i − 1. Φ means dummy antecent or the span i is not a mention, and every
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yi can be assigned with the preceding spans. Hence, then there are three factors for the

pair-wise coreference core. (1) predict Im(i), whether span i is a mention. (2) predict Im(j),

whether span j is a mention. (3) search for yi, based on the previous mention predictions

Im(i) and Im(j). One problem with the above factorization is that the third factor yi may

have multiple values, which are antecedent for multiple preceding spans. Furthermore, it

is not easy to do N ways classification directly, because for each yi the output candidate

labels are different, and the features only from span i may not enough to produce the

yi. Instead, a better independence factorization can model this into a two-stage pipeline

model as shown in AMR parsing: Stage 1, predicting the possible mentions via local

classifier for each local factor Im(i). Stage 2, predicting the edges labels between all pairs

as local binary classification Ia(i, j), which means whether span i and j are in the same

cluster without caring about the preceding or not. In this output factorization, we can

model two part of contextualized representation from span i and span j. Such a pair-wise

factorization will offer more discriminative features and simplifer all the classification into

binary classification. We still can use a biaffine classifier to model the pair-wise binary

classification. Furthermore, logic constraints can be added here to enforce the consistency

between local decisions.

Then, we consider the input decomposition and alignment discovery for coreference

resolution. According to the above analysis on output decomposition, we need to decom-

pose the inputs into candidate spans. Assuming there are N words in the input document,

then there will be T(T+1)
2 possible spans. However, we don’t need to consider the spans

cross the sentence boundaries, and we only mainly consider the pronouns, nouns , and

other entity-related or event-related spans. Hence, such inductive biases about extracting

potential spans will also simplify the input decomposition. At the same time, the pruning of

the spans will reduce the computation for the second stage on binary edge label prediction.

Hence, our proposed methods for two-stage graph-based parsing can be used in

coreference resolution with task-specific output decompositions and input decompositions.

The contextualized representation for each span can also benefit from span representation

we studied in phrasal-anchoring parsing Section 3.3.4
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6.2.2.2 Independent Factorization for Other Tasks

For broad-coverage symbolic representations, our dissertation only covers the rep-

resentation for a single sentence. While in the future, we also study on multisentence

and document-level representations such as MS-AMR [238], Doc-AMR [239], discourse

parsing [111], and soon on.

For application-specific symbolic representations, besides the single sentence repre-

sentation in [TOP, 53], we also can extend our structured prediction models into session-

based conversational representation such as session-based TOP [140], [TreeDST, 141],

and [Dataflow, 142]. Beyond conversational analysis, in the future, I plan to exploit

this structured analysis on symbolic representation to offer rigorous document analysis,

easier knowledge organization, programmable reasoning, which are potentially helpful

for structured social analysis such as mental health, cyberbullying, thus offering structural

suggestions to guide human behavior.

6.2.3 Future Work on Contextualized Representation

The strong power of contextualized representation learning make out independent

factorization works still gold under our inductive biases. However, there are still many

challenges on contextualized representation learning.

6.2.3.1 Extreme Long Context

First, we need to resolve the extrem long text encoding problem. Our current models

of psychotherapy dialogue and schema-guided dialogue only consider 8 to 16 utterances

as the dialogue history window. However, we have more than 500 utterance in a single

therapy session. Furthermore, a psychotherapy treatment may last for months and years

which involves multiple dialogue sessions. The extended context problem also exists in

other domains, such as scientific document analysis and threaded conversations in social

media. The extreme long context modeling has already attracted a lot of attentions [240, 241].

However, how to joinly model the long text in interactive form (especially in multiparty

dialogue) is still not well studied.
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6.2.3.2 Contextualized Representation Beyond Text

In this dissertation, we mainly utilize the contextualized text representation to model

the structured prediction. However, human acquisition of information and communication

with the world does not occur based on pure language input. From a cognitive perspective,

processing language in isolation without information in other modalities seems insufficient.

Recently, multimodal contextualized representation has also been widely used in the natural

language processing task. Beinborn et al. [242] shows that multimodal grouding of verbs

play a crucial role for the compositional power of language. Jointly considering both

visual and textual models has been widely used in many tasks, such as Multimodel Aspect-

Based Sentimental Analysis (MABSA) [243], Named Entity Recognization [244] and so

on. Some tasks consider both multimodal inputs and multimodal outputs, e.g., Question

Answering [245]. More recently, vision-language pretraining further boosts the power

of contextualized representation [246, 247]. Recent works on multimodality above raise

challenges for future structured prediction tasks and their independent factorization.

6.2.4 Other Biases in Other Formalism

Besides the above structural inductive bias on compositionality and hierarchical struc-

ture, in the future, I will continue the study on how to represent other inductive biases in

other different ways.

6.2.4.1 Declaritive Constraints and Other Latent Models

In this dissertation, we mainly consider the interdepenence with prior knowledges on

how to decompose the input, output and their alignments. For example, in Section 3.2.3,

we model the exclusive alignement by relaxing the discrete alignement variable with soft

score matrix, and resolving the intractable marginal inference with Perturb-and-Max (Sec-

tion 3.2.3.2) and Gumbel-Sinkhorn networks (Section 3.2.3.3).

In the future, we also can inject other structural interdependence/constraints with declar-

ative tools, such as integer linear programming [59], probabilistic neural logic rules [60, 61,

62, 248]. However, many existing work on constrained learning is to design regularizer to

optimize the training objective in the output space. In the future, modeling the constraints on

the state space or action space will offer more direct supervision both the model structured

learning and inference [249].
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Furthermore, continuing the research line of modeling latent variables, we plan to

study more ways to relax structural inductive biases as continuous and differentiable latent

variables in the end2end deep learning [63, 64].

6.2.4.2 Other Biases: Casuality and Approximate Biases

With limited observations and resources (time, memory, energy), our human intelligence

of generalizing to new environments makes us efficiently learn when interacting with the

world and other human beings. This efficiency largely depends on many inductive biases and

approximate biases from human intelligence [25], which are potentially helpful for machine

intelligence.

Beside the compositionality-related inductive biases in our dissertation, casuality is

another important inductive bias for human intelligence, which may also help on design

deep learning based models. Especially, in our dissertation, independent factorization

and markov random field-based formalism only can capture the undirectional correlation

between different variables. In the future, we will extend the formalisms to bayesian

networks [81, 250] and intervention-based casual inference [251, 252]. The key of casuality

for deep learning is to replace “reasoning by association” with “causal reasoning”. With the

ability to infer causes from the observed phenomena, deep learning will be more robust on

broader pracitical usages.

Furthermore, we also plan to model the uncertainty and approximate biases for the

learning and inference in deep learning. First, approximate inference algorithms can be

derived by approximating the underlying exact inference problem. For example, in this

dissertation, the partition function in the posterior alignment model is intractable, to make it

tractable and differentiable, we leverage the Peturb-and-Max (Section 3.2.3.2) and Gumble-

Sinkhorn network (Section 3.2.3.3). The similar ideas on esitimating the marginal inference

can also be used in other latent structured predictin models mentioned in Section 6.2.4.1.

Finally, to handle the uncertainty issues in practical machine learning, beyond the

point estimation of learning a single set of best weights, bayesian deep learning seeks

to equip deep learning with uncertainty estimation [250]. Finally, the error tolerance in

machine learning also can be leveraged to design efficient machine learning methods, such

as stochastic distributed optimization [253], hardware-aware efficient quantization [254],
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and so on.

6.2.5 Learning and Transfering the
Inductive Biases

In this dissertation, we mainly design inductive biaes with prior knowledge about

structured prediction tasks including the input decomposition, output decomposition

and factor mdoeling. Besides designing the inductive bias by hand, we also can explore

more on how to learn the inductive biases Section 6.2.5.1 and transfer to other new

tasks Section 6.2.5.2.

6.2.5.1 Learning the Inductive Biases

Inspired by self-supervised pretraining in ELMo and BERT [39], our VLDB’2022 pa-

per [255] extend a contrastive-learning method to learn the representation for tree-structured

database query plans. With a large amount of raw database query plans, we calculate the

graph similarity metric Smatch [256] to represent the degree of overlap between a pair of

plans. 1 After we get the Smatch scores sij of each plan-pair < pi, pj >, this can easily form a

large dataset with Smatch score as the contrastive self-supervision. In our experiments on

the downstream applications, we show that the structure encoder pretrained from this task

can be easily finetuned for a new task or domain. In the future, such self-supervied method

can also be used for other data beyond natural language, such web page, programming

language, documents, and so on.

6.2.5.2 Transferring Inductive Biases

Learning to learn is an essential inductive bias in human intelligence [29], human can

generalize experience learned from similar tasks to learn new tasks. Nowadays many

datasets and pretrained models are publicly accessible, besides transferring the inductive

bias from initial language models, I also studied how to transfer the inductive biases

learned from the well-studied tasks to new tasks. Our previous work on schema-guided

dialogue state tracking [211] proposed to add a supplementary pretraining phase on an

intermediate task between the pretraining-finetuning framework. Given a brand new

1The Smatch score ([0,1]) between two tree-structure plans can be computed by graph matching optimization
algorithm, such as Integer Linear Programming (ILP) or Hill-climbing methods.
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task like schema-guided dialogue state tracking, we show that supplementary pretraining

on intermediate tasks with similar problem structures will offer efficient distributional

inductive biases. More specifically, we found that inductive bias learned in sentence-pair

matching (via Natural Language Inference on SNLI) helps with intent classification tasks,

and span-based retrieval task structure (via Question Answering on SQuAD2) helps on the

noncategorical slot labeling task.
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Figure 6.1: The autoregressive factorization of AMR Parsing in different decoding time
step.



APPENDIX A

CLUSTERING STRATEGIES ON

MISC CODES

Motivational Interview Skill Codes (MISC) [55, 56] are designed to represent the func-

tions of each client and therapist utterance in the psychotherapy dialogue. The original

MISC annotation guideline [138] included 28 labels (9 client codes, 19 therapist codes). Due

to data scarcity and label confusion, various strategies are proposed to merge the labels

into a coarser set. In this dissertation, we adopt the grouping proposed by Xiao et al. [139].

The detailed clustering has been introduced in Table 2.2 in Section 2.2.2.1. This appendix

first introduces the existing clustering strategies in Section A.1, and then demonstrates the

detailed label distribution and examples of the grouped MIA and MIN labels (Section A.2)

in our strategy MISC-11.

A.1 Main Clustering Strategies
This section summarizes the existing clustering stategies of MISC codes as follows:

• MISC-28: The original MISC description of Miller et al. [138] included 28 labels (9

client codes, 19 therapist codes). However, among them, there are 13 therapist codes

are too rare to learn an efficient model on predicting them.

• MISC-8: Hence, Can et al. [185] retain 6 original codes FA, GI, QUC, QUO, REC, RES,

and merge the remaining 13 rare therapist codes into a single COU label. Furthermore,

they merge all 9 client codes into a single CLI label. In total, they have 7 labels for

therapists and 1 label for clients.

• MISC-15: Instead, Tanana et al. [18] merge only 8 of 13 rare labels in therapist codes

into a customized label named OTHER, and then they cluster client codes into 3 labels

according to the valence of changing, sustaining or being neutral on the addictive
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behavior [184]. Hence, in total, they have 12 labels for therapists and 3 labels for

clients.

• MISC-11: Then Xiao et al. [139] combine and improve above the two clustering strate-

gies (MISC-8 and MISC-15) by splitting all the 13 rare labels according to whether the

code represents MI-adherent(MIA) and MI-nonadherent (MIN). In total, they have 8

therapist codes and 3 client codes as shown in Table 2.2 (Section 2.2.2.1). We show more

details about the original labels in the group MIA and MIN in Table A.1 (Section A.2).

A.2 Details of MISC-11
In MISC-11, 13 rare labels are grouped into two set: 8 labels representing MI-adherent(MIA)

and 5 labels representing MI-nonadherent (MIN). Table A.1 shows in the distribution of the

grouped MIA and MIN labels. Compared to the other labels in Table 2.2, the grouped MIA

and MIN are still relative less frequent. Hence, we use the focal loss to resolve the label

imbalance issue, and improve the overall performance. The examples in Table A.1 will help

to understand the meanings of the rare labels. For more details about each of the MISC

code, please refer to the latest MISC annotation guideline [257].
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Table A.1: Label distribution, description and exmaples for MIA and MIN.

Code Count Description Examples

MIA 3869

Group of 8 MI Adherent codes : Affirm(AF);
Reframe(RF); Emphasize Control(EC); Sup-
port(SU); Filler(FI); Advise with permis-
sion(ADP); Structure(ST); Raise concern with
permission(RCP)

“You’ve accomplished a difficult task.” (AF)
“It’s your decision whether you quit or not.” (EC)
“That must have been difficult.” (SU)
“Nice weather today!” (FI)
“Is it OK if I suggested something?” (ADP)
“Let’s go to the next topic.” (ST)
“Frankly, it worries me.” (RCP)

MIN 1019

Group of 5 MI-nonadherent codes: Con-
front(CO); Direct(DI); Advise without per-
mission(ADW); Warn(WA); Raise concern
without permission(RCW)

“You hurt the baby’s health for cigarettes?” (CO)
“You need to xxx.” (DI)
“You ask them not to drink at your house.” (ADW)
“You will die if you don’t stop smoking.” (WA)
“You may use it again with your friends.” (RCW)



APPENDIX B

COMBINATIONS OF SCHEMA

DESCRIPTIONS

In schema-guided dialogue modeling, as shown in Figure 5.2 and Section 5.1.1, it shows

three main schema components: service, intent, slot. Natural language descriptions are

also added to the three components. This appendix includes the ablation study on the

combinations of the three descriptions.

B.1 Combinatory Settings
For each subtask, the key description element must be included, e.g., intent description

for intent task, and value for categorical slot tasks. However, besides the description about

intents and slots, we also have the service descriptions and the names for intents and

slots. Will the service descriptions help and what kind of composition will offer better

performance? In this section, we will mainly answer the questions with the following

experiments on compostion of descriptions.

To show how each component helps schema-guided dialogue state tracking, we incre-

mentally add richer schema component one by one.

• ID: This is the least informative case: we only use meaningless intent/slot identifiers,

e.g., Intent_4, Slot_2. It means we don’t use description from any schema component.

We want to investigate how a simple identifier-based description performs in schema-

guided dialogue modeling, and the performance lower-bound on transferring to

unseen services.

• I/S Desc: Only using the original intent/slot descriptions of intent/slot in SG-DST and MUL-

TIWOZ 2.2 dataset for corresponding tasks.

• Service + I/S Desc: Adding a service description to the above original intent/slot

descriptions. Service descriptions summarize the functionalities of the whole service,
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hence may offer extra background information for intent and slots.

For categorical slot value detection, we simply add the value after each of the above

composition.

B.2 Results on Description Combinations
Table B.1 shows the results of using different description compositions. First, there

are consistent findings across datasets and subtasks: (1) using meaningless identifier as

intent/slot description shows the worse performance on all tasks of both datasets, and can

not generalize well to unseen services. (2) using intent/slot descriptions can largely boost

the performance, especially on unseen services.

However, the impact of service description varies by tasks. For example, it largely hurts

performance on intent classification task, but does not impact requested slot and categorical

slot tasks. According to manual analysis of SG-DST and MULTIWOZ 2.2 dataset, we found

that service description consists of the main functions of the service, especially the meaning

of the supported intents. Hence, using service description for intent causes confusion

between the intent description information and other supported intents. Moreover, in

categorical slot value prediction task, the most important information is the slot description

and value. When adding extra information from service description, it improves marginally

on seen service while not generalizing well on unseen services, which indicates the model

learns artifacts that are not general useful for unseen services.

Finally, on noncategorical slot tasks, the impact of service description may also varies on

datasets. On SG-DST, there are 16 domains and more than 30 services, the rich background

context from service description contains both domain and service-specific information,

which seems to help both seen and unseen services. However, on MULTIWOZ 2.2, it hurts

the performance on seen service restaurant the most, while improving the performance on

the unseen service hotel by 4 points. In this case, it works like a regularizer rather than a

definitive clues. Because in MULTIWOZ 2.2, there are only 8 domains, and one service per

domain, thus service descriptions just contain domain related information without much

extra information, it will not help the model to detect the span for the slot.
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Table B.1: Models using different composition of schema, results on test set of SG-DST and
our remixed MULTIWOZ 2.2. For zero-shot performance on MultiWOZ, we simply merge
the zero-shot performance on each domain.

Model\Task SG-DST MultiWOZ
Intent Req Cat NonCat Cat NonCat

Seen Service
Identifer 92.76 99.70 87.86 88.38 58.46 77.29
I/S Desc 95.35 99.74 92.10 93.52 85.84 83.67
Service + I/S Desc 95.28 99.74 93.19 92.34 85.07 80.56

Unseen Service
Identifier 50.63 88.74 54.34 10.77 53.05 56.18
I/S Desc 92.17 98.16 68.88 69.84 56.49 61.39
Service + I/S Desc 86.95 97.99 67.08 71.30 60.58 59.63



APPENDIX C

SUPPLEMENTARY TRAINING AND

DESCRIPTION STYLES

This appendix shows more analysis and results on how to model the natural language

description in schema-guided dialogue, including supplimentary training Section C.1,

homogeneous and heterogeneous evaluation on different description styles Section C.2.

C.1 More Results on Supplementary
Training

Table C.1 shows the detailed performance when using different intermediate tasks as

supplementary training. For SNLI tasks, as the pretrained model is uncased model (tex-

tattack/ bert-base-uncased-snli), hence, we first train different models with BERT-base-

uncased, then compare the performance with SNLI pretrained model. For SQuAD2, we use

deepset/bert-base-cased-SQuAD2 model, hence, we compare it all cased model. To fairly

compare with our original Cross-Encoder, we add extra speaker tokens [user:] and [system:]

for encoding the multiturn dialogue histories.

To evaluate show supplementary training impact on different styles, we also show

the detailed results when we apply supplementary training of SQuAD2 on the NON-

CAT tasks (Section C.1.1).

C.1.1 More details on SQuAD2 Results on
Different Styles

For homogeneous evaluation, Table C.2 shows the detailed performance when we apply

SQuAD2-finetuned BERT on our NONCAT models. We found that supplementary training

generally helps the NONCAT task in most setting except for NAMEONLYon SG-DST dataset.

Furthermore, the SQuAD2 supplementary training helps more on the rich description than

name-based description, because the questions in SQuAD2 share more distribution similary

with natural language descriptions than the intent or slot names. Besides that, another
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observation is that supplementary training helps more on unseen services, while slightly

hurting the performance on the seen services.

C.2 Homogeneous and Heterogeneous
Evaluation on Different Styles

Section 5.5.1 introduces the benchmarking description styles used in our dissertation.

This appendix section shows more detailed evaluation results on both homogeneous and

heterogeneous setting.

C.2.1 More Results on Homogeneous and
Heterogeneous Evalution

We list the detailed results for our evaluation across different styles. We use italic to

show the homogeneous evaluation, where the results are shown in the diagonal of each

table, and we underline the best homogeneous results in the diagonal. We use bold to show

the best heterogeneous performance and the best performance gap in the last two columns.

C.2.1.1 Results on Intent Classification

The results on SG-DST dataset are shown in Table C.3. Because there are very few intents

in MULTIWOZ 2.2 dataset, we don’t conduct intent classification on MULTIWOZ 2.2. All

performance get dropped when evaluating on heterogeneous descriptions styles. For both

heterogeneous and homogeneous evaluation, adding rich description on intent classification

tasks seems not bring much benefits than simply using the name-based description. As the

discussion in Section 5.5.2, we believe the name template is good enough to describe the

core functionality of an intent in SG-DST dataset.

C.2.1.2 Requested Slot

Table C.4 shows the results on SG-DST dataset for the requested slots subtask. We ignore

the requested slots in MULTIWOZ 2.2 dataset due to its sparsity. Overall, the requested slot

subtask are relatively easy, performances on heterogeneous styles still drops but not much.

For both heterogeneous and homogeneous evaluation, the performance are not sensible to

rich description.
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C.2.1.3 Categorical Slot

The results on SG-DST and MULTIWOZ 2.2 dataset are shown in Table C.5. When

creating MULTIWOZ 2.2 [215], the slots with less than 50 different slot values are classified

as categorical slots. We noticed that this leads inconsistent results with SG-DST dataset. It is

hard to draw a consistent conclusion on the two datasets. According to the definition, we

believe SG-DST are more suitable for categorical slot subtasks, we can further verify our

guess when more datasets are created for the research of schema-guided dialogue in the

future.

C.2.1.4 Noncategorical Slot

We conduct noncategorical slot identification subtasks on both SG-DST and MULTIWOZ

2.2 dataset. The results are shown in Table C.6. Overall, the rich description performs better

on both homogeneous and heterogeneous evaluations.

C.2.2 Qualitative Analysis On Heterogeneous
Evaluation

We conduct qualitative analysis on heterogeneous evaluation on name-based descrip-

tions. Table C.7 shows how paraphrasing the name-based descriptions impacts on the

categorical and noncategorical slot prediction tasks.

The first three rows at the top are showing the cases of adding modifiers to the name.

When the added extra modifiers are keywords in other slots, e.g., “attraction” are the

keywords also used in “attraction_name.” The first shows “attraction_location” may wrongly

predicted as “attraction_name.” It seems the model does not understand the compound

nouns well, and they seems just pay attention to each key words “attraction” and “movie”

here.

The three rows in the middle are showing the cases of using synonyms. Changing “to”

to “target,” and changing “movie” to “film” will cause extra confusion, which shows the

model may fail to the synonyms.

The last four rows at the bottom is showing using abbreviations. Changing “number”

to “num” will not impact the model, while changing “subtitle” to “sub” may let the model

miss the key meaning of subtitle. The performance drop in the later case may be due to the

misuse of the “sub” prefix, in English, it usually means “secondary, less important, parts.” We
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also found the “orig” and “dest” abbreviations may also understand well by the model.

The above abbreviations seems reasonable paraphrases people will use for naming, while

the are not understood well in the given context. Hence, in the design of schema-guided

dialogue, if using name-based descriptions, we should be careful for about abbreviations

used in the naming.
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Table C.2: Results on different description style on SG-DST and MULTIWOZ 2.2 dataset,
when performing SQuAD2 supplementary training.

Style/Dataset
SG-DST MULTIWOZ 2.2

all seen unseen all seen unseen

ORIG

75.76 93.52 69.84 57.2 83.67 61.39
77.75 91.73 73.09 59.13 81.46 65.66
+1.99 -1.79 +3.25 +1.93 -2.21 +4.27

Q-ORIG

76.60 92.86 71.18 57.80 82.45 62.45
82.73 90.85 80.02 58.86 81.17 65.51
+6.13 -2.01 +8.84 +1.06 -1.28 +3.06

NAMEONLY

75.63 88.90 71.21 56.18 81.68 61.30
75.18 87.41 71.10 57.93 82.26 63.07
-0.45 -1.49 –0.11 +1.75 +0.58 +1.77

Q-NAME

74.86 91.78 69.22 56.17 81.19 60.47
74.91 88.8 70.26 56.13 80.87 61.72
+0.05 -2.98 +1.04 -0.04 -0.32 +1.25

Table C.3: Accuracy of intent classification subtask with different description styles on
unseen services. We train the models on SG-DST dataset for each description in each row,
then evaluating on 4 different descriptions styles. The mean are average performance of the
remaining 3 descriptions styles. The ∆ means the performance gap between the mean and
the homogeneous performance.

Style NAMEONLY Q-NAME ORIG Q-ORIG mean ∆
NAMEONLY 93.94 78.27 93.18 75.95 82.47 -11.47

Q-NAME 93.18 92.69 93.26 93.36 93.27 +0.58
ORIG 81.57 66.42 92.17 90.43 79.47 -12.70

Q-ORIG 81.48 79.04 93.19 92.81 84.57 -8.24

Table C.4: F1 Score of requested slot classification subtask with different description styles
on unseen services. We train the model on SG-DST dataset for the description style in each
row, then evaluate on 4 different descriptions styles. The mean are average performance of
the remaining 3 descriptions styles. The ∆ means the performance gap between the mean
and the homogeneous performance.

Style NAMEONLY Q-NAME ORIG Q-ORIG mean ∆
NAMEONLY 98.56 96.01 97.2 97.54 96.92 -1.64

Q-NAME 98.37 98.64 97.8 97.48 97.88 -0.76
ORIG 97.95 95.78 98.16 98.52 97.42 -0.74

Q-ORIG 97.24 95.85 97.00 98.15 96.70 -1.45
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Table C.5: Joint accuracy of categorical slot subtask with different description styles on
unseen services. We train the different models on SG-DST and MULTIWOZ 2.2 datasets,
respectively, for each description style in each row. Then we evaluate on all 4 descriptions
styles. The mean are the average performance of the remaining 3 descriptions styles. The ∆
means the performance gap between the mean and the homogeneous performance.

Style NAMEONLY Q-NAME ORIG Q-ORIG mean ∆
SG-DST

NAMEONLY 68.09 58.41 63.49 62.21 61.37 -6.72
Q-NAME 69.01 68.29 68.53 68.12 68.55 +0.26

ORIG 70.19 65.91 68.88 69.64 68.58 -0.30
Q-ORIG 69.98 65.97 69.26 71.29 68.40 -2.89

MULTIWOZ 2.2
NAMEONLY 59.24 59.32 59.12 59.29 59.24 0.00

Q-NAME 58.64 59.74 58.49 59.43 58.85 -0.89
ORIG 59.26 59.91 56.49 58.97 59.38 +2.89

Q-ORIG 60.00 60.70 51.18 58.95 57.29 -1.66

Table C.6: Joint accuracy of noncategorical slot subtask with different description styles
on unseen services. For each description style in each row, we train different models on
SG-DST and MULTIWOZ 2.2 datasets, respectively. Then we evaluate each model trained
from one style on all 4 different description styles. The mean are the average performance
of the remaining 3 description styles. The ∆ means the performance gap between the mean
and the homogeneous performance.

Style NAMEONLY Q-NAME ORIG Q-ORIG mean ∆
SG-DST

NAMEONLY 71.21 49.85 59.8 59.95 56.53 -14.68
Q-NAME 66.32 69.22 61.67 60.77 62.92 -6.30

ORIG 78.73 51.57 69.84 69.87 66.72 -3.12
Q-ORIG 62.6 36.44 69.49 71.18 56.18 -15.00

MULTIWOZ 2.2
NAMEONLY 61.30 57.88 61.51 64.05 61.15 -0.15

Q-NAME 60.62 60.47 60.6 62.58 61.27 +0.80
ORIG 61.77 65.4 61.39 62.4 63.19 +1.80

Q-ORIG 61.29 60.6 62.46 62.45 61.45 -1.00
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