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Abstract

This paper presents approaches for the noetic end-to-end re-
sponse selection challenge in DSTC7. Given a pool of re-
sponse candidates in a dialog history with external domain
knowledge, we propose a Gated Self-attentive Memory Net-
work to encode dialog history and external domain knowl-
edge in an end-to-end trainable manner. Our novelty is that
each utterance in the memory is enhanced with self-attention
building the connection between dialog history and external
domain knowledge in a gated multi-hop manner. We ensem-
ble various gated self-attentive memory network with hier-
archical GRU baseline models for final submission. Official
evaluation results show that our approach ranks at the sec-
ond place for both student advising and Ubuntu subtasks in-
tegrated with external domain knowledge.

Introduction
Contextual modeling is one of the crucial issue in spoken
dialog system. In noetic end-to-end response selection chal-
lenge in DSTC7 (Yoshino et al. 2018), dialog context in-
cludes utterances from multi-turn dialog history and external
domain knowledge. For example in Ubuntu corpus, external
domain knowledge may be represented as manual pages for
Linux commands. In student advising corpus, external do-
main knowledge may be represented as course descriptions,
student profiles etc. Intuitively, dialog context provides use-
ful information to judge whether the next response candidate
is relevant to the current dialog context. Our challenge is to
encode them effectively in an end-to-end trainable manner.

In this paper, we propose Gated Self-attentive Memory
Network (GSMN) for contextual modeling in dialog. We
first encode each utterance in a dialog history and response
candidates using bi-directional Gated Recurrent Unit (bi-
GRU) (Chung et al. 2014) or bi-directional LSTM (Hochre-
iter and Schmidhuber 1997). We take the concatenation of
the first and the last hidden vectors to represent an utter-
ance. Such collection of utterance representation is inter-
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preted as memory (Sukhbaatar, Weston, and Fergus 2015;
Chen et al. 2016; Liu and Perez 2017). External domain
knowledge in the DSTC7 challenge contains a set of key-
value pairs for an entity subject. In student advising corpus
as an example, a course ID “EECS183” has a key “Course
Title” with a value “Elementary Programming Concepts”,
and a key “Description” with a value “Fundamental con-
cepts and skills of programming in a high-level language...”
etc. Since key-value pairs are just plain texts, we incorporate
key into the value text and use bi-GRU to encode the result-
ing text. Then the encoded texts for external domain knowl-
edge are augmented into the memory. Apart from typical
memory networks (Sukhbaatar, Weston, and Fergus 2015;
Chen et al. 2016; Liu and Perez 2017) to encode dialog his-
tory and knowledge base (Madotto, Wu, and Fung 2018), our
model enables self-attention among the utterance contents in
memory. Typical memory networks only focus on enhanc-
ing the encoding of the last utterance in a dialog through
the attention mechanism. However, the last utterance in a
dialog history may not carry enough information for infer-
ence. Co-references among utterances in dialog history and
external domain knowledge exists and can be modeled by
self-attention. In our proposed model, we first perform self-
attention over utterances in a dialog history. Resulting ut-
terances are passed through an external domain knowledge
modeled as another memory. Inspired by the gated memory
network (Liu and Perez 2017), we employ the gating mech-
anism to control the degree of modification of utterance en-
codings in a multi-hop manner. We only put factual informa-
tion, i.e. dialog utterances and external domain knowledge,
into memory. Each response candidate is passed through the
proposed GSMN trying to “retrieve” the factual informa-
tion. Finally, we compute the summation of encodings of
all utterances in a dialog history as a vector representation.
Then we compute similarity between dialog history and each
response candidate using a bilinear transform, followed by
Softmax to obtain a probability distribution over response
candidates.

Related Work
End-to-end neural network models for retrieval-based dia-
logue systems have been gaining popularity recently. One



early work on dialog response selection employed a dual
LSTM (Lowe et al. 2015b) on the Ubuntu corpus based
on single-turn question-response pairs. In DSTC7 chal-
lenge, not only the dialogs have multiple turns, external
knowledge is also provided requiring deeper level of under-
standing between contextual utterances and external knowl-
edge. (Tan et al. 2015) built a bi-directional LSTM en-
coder with CNN on questions and responses candidates. Re-
garding multi-turn retrieval-based dialog system, (Wu et
al. 2016) introduced a sequential matching method to dis-
till important information between each contextual utter-
ance and response pairs. (Lowe et al. 2015a) concatenated
all the utterances in the passage and then matching score
was computed based on the contextual representation. (Yan,
Song, and Wu 2016) proposed contextual query reformu-
lation strategies to concatenate contextual utterances with
the last utterance. (Zhou et al. 2016) used a multi-view
approach to model the contextual utterances as word se-
quence and utterance sequence. (Zhou et al. 2018) proposed
self-attention and cross-attention in multi-turn response se-
lection. Hierarchical encoding methods have received a lot
of attention including web query suggestion (Sordoni et al.
2015), dialog systems (Serban et al. 2016; 2017; Bai et al. ;
Tran, Zukerman, and Haffari 2017), and various document-
level tasks (Li, Luong, and Jurafsky 2015; Tang, Qin, and
Liu 2015; Yang et al. 2016).

For external knowledge integration, memory net-
work (Sukhbaatar, Weston, and Fergus 2015) is a promising
method for question and answering tasks with knowledge
base. (Xiong, Merity, and Socher 2016) encoded knowledge
into memory representation and retrieval is performed via
the attention mechanism. (Chen et al. 2016) employed
a memory network to store knowledges mentioned in
dialog history for spoken language understanding. (Xu
et al. 2016) incorporated a loosely-structured knowledge
base into a neural network with the gating mechanism.
Recently, (Yang et al. 2018) leverages online external
knowledge for response ranking in information-seeking
conversation systems.

Problem Statement
Given conversational history H , external knowledge G,
question Q and response candidate pool {Aj}, we want to
select the correct response candidate from the pool:

Pr(j′|H,G,Q, {Aj}) (1)

Hierarchical LSTM Baseline
Inspired by hierarchical encoding method and attention
mechanism, we investigate a hierarchical LSTM model as
baseline. Encoding of dialog history is performed in a two-
level hierarchy. Each utterance is first encoded using Bi-
GRU. Motivated by match LSTM (Wang and Jiang 2016),
we use the last utterance to “enhance” the rest of utterances
using word-level attention. Then the first and last hidden
vectors are concatenated to represent an utterance. Then a
second-level Bi-GRU connects these utterance vectors fol-
lowed by an utterance-level self-attention layer to capture
the relationship among utterances.

Proposed System
Gated Self-attentive Memory Network
To tackle the problem on how to effectively incorporate ex-
ternal domain knowledge into the task of dialog response
selection, we propose an End-to-end Gated Self-attentive
Memory Network (GSMN) consisting of two sequential
steps: retrieving relevant content from 1) the short-term
memory and 2) the long-term memory. In this DSTC7
challenge, we define a short-term memory as utterances
from a conversational history H , and a long-term memory
as a set of entity subjects in external domain knowledge
G={g1, g2, g3, ..., gS}. We describe the building blocks of
the proposed network in subsequent sections.

Embedding Layer We convert every word token ti into
word embedding ei via an embedding lookup function ψ:
ei = ψ(ti).

Figure 1: Bi-RNN based utterance encoding: The output
vector is a concatenation of the first hidden state of a back-
ward RNN and the last hidden state of a forward RNN.

Bi-RNN based Utterance Encoding We use bi-
directional recurrent neural network (Bi-RNN) to encode
each dialog utterance, external domain knowledge, and
response candidate. In Figure 1, we use the concatenation
of the last hidden state from a forward RNN and the first
hidden state from a backward RNN to represent an utter-
ance. Empirically, we experimented with Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber 1997) and
Gated Recurrent Units (GRU)(Chung et al. 2014) and found
that bi-GRU consistently outperformed bi-LSTM in our
experiments.

Memory Attention Similar to memory network, we em-
ploy an attention mechanism to “retrieve” relevant memory
vectors based on an input query vector. The output vector is
a weighted sum of the memory vectors. In matrix form, we
have multiple inputs X = [x1 ... xJ ] and memory vectors
M = [m1 ... mK ], X ∈ RJ×D, M ∈ RK×D. The out-
put matrix O serves as retrieved content and has the same
dimension as the input matrix:

O = Softmax(Xφ1(M)T )φ2(M) (2)



Figure 2: Memory attention module.

where φ1 and φ2 are Bi-RNN encoders with different train-
able weights. Softmax is performed to a generate probabil-
ity distributions over the memory items. Figure 2 shows the
computation graph of memory attention mechanism.

Figure 3: Gated memory attention module.

Gated Memory Attention Inspired by (Srivastava, Greff,
and Schmidhuber 2015), we employ a gating mechanism
when combining the input and the retrieved output from
memory. The gating mechanism regulates the degree of en-
hancement of the input to prevent information overload. As
shown in Figure 3, the gate G is a trainable fully connected
neural network with sigmoid activation. The gating mecha-
nism is shown below:

O′ = G ·X + (1−G) ·O (3)

End-to-end GSMN Figure 4 depicts the end-to-end
GSMN for dialog response selection. Short-term memories
and long-term memories are stacked sequentially to enhance
dialog utterances and response candidates. This process is
repeated in a multi-hop fashion. Unlike (Sukhbaatar, We-
ston, and Fergus 2015), we do not share weights across
hops. A reduce-sum operation converts the set of memory-
enhanced dialog utterances into a single vector c to represent
a full dialog history. Since each utterance vector attends to

Figure 4: Our proposed end-to-end Gated Self-attentive
Memory Network (GSMN) for dialog response selection.
Gates and memory attention blocks in the same dotted box
share parameters.

all utterances in a dialog history, GSMN is self-attentive by
nature similar to transformer (Vaswani et al. 2017).

External Knowledge Encoding

Inspired by (Miller et al. 2016; Eric and Manning 2017;
Madotto, Wu, and Fung 2018), we represent each key-value
pair in external domain knowledge as a vector. In DSTC7
challenge, key and value are simply sequences of word to-
kens ({k1, k2, ..., kM}, {v1, v2, ..., vN}), where ki is the i-
th token in a key and vi is the i-th token in a value. The
final vector representation of a key-value pair is the con-
catenation of their average word embeddings [

∑M
i=1 ψ(ki),∑N

i=1 ψ(vi)]. We treat each entity subject such as a course
entity as a sequence of key-value vectors. We further com-
press the sequence via Bi-RNN taking the first and the last
hidden vectors for representation. Finally, vectors from all
entity subjects in external domain knowledge form a long-
term memory in GSMN.



Dialog History and Response Relevance
Given the final encoding for the dialog history c and the en-
coding for an response candidate aj , we measure their simi-
larity as follows:

sim(c, aj) = ct ·M · aj (4)

Pr(j|c) ∝ esim(c,aj) (5)

where M is a trainable bi-linear transform of dialog history
and response candidate encodings. We use Softmax to con-
vert similarity scores into probability distribution over re-
sponse candidates. Cross-entropy loss is employed for opti-
mization.

Ensemble Learning
Ensemble learning is a popular technique to boost final per-
formance after combining prediction results from differ-
ent models. We propose a tree-based approach to fully ex-
ploit the complementary strengths of models. Tree-based
machine learning algorithms (Chen and Guestrin 2016;
Ke et al. 2017) are widely used in many competitions due
to their effectiveness in improving predictive performance.
For response selection, we formulate ensemble learning as
binary classification. Denote N as the number of dialogs,
M as the number of candidate models to ensemble, and K
as the size of answer pool for each dialog. There are NK
training samples with an M-dimension score vector from the
models. We use XGBoost (Chen and Guestrin 2016) to train
a binary classifier using scores from many GSMN models
that are optimal at various evaluation metrics, and with var-
ious hyperparameters. Our goal is to ensemble diversified
models. The ensemble learning pipeline is shown in Fig-
ure 5. To boost performance and speed up the training pro-
cess, we filter out training instances with mean prediction
scores outside the range [0.001,0.95] to allow the ensem-
ble model focusing on “hard” samples. During test, response
candidates for each dialog are ranked according to the pre-
dicted scores of the ensemble model.

Figure 5: Tree-based ensemble learning. Different colors
and saturation represent different dialogs and models respec-
tively.

Experiments
We participated in the subtask 1 and 5 in the noetic end-to-
end response selection challenge in DSTC7. In subtask 1,

Dataset Train Dev Test Test-Case 2
Advising 100k 500 500 500
Ubuntu 100k 5000 1000 N/A

Table 1: Number of samples in advising and Ubuntu
datasets.

the challenge was to pick the correct option from a pool of
100 response candidates without referring to external knowl-
edge. Subtask 5 was similar to subtask 1, except that external
knowledge can be exploited.

Data
Two datasets were provided for the challenge:
• Flex Advising Corpus contains student-advisor dialogs

from a university. Each dialog is from an advising session
in which the role of an advisor is to guide a student with
choosing suitable courses for an upcoming semester. Ex-
ternal knowledge include full course catalog and student
profiles. Paraphrases of sentences in dialog history and
target responses are also provided for data augmentation.

• Ubuntu Dialog Corpus contains dialogs from the Ubuntu
IRC. External knowledge are the Linux manual pages.

Table 1 shows the statistics of the datasets. There were two
test cases in the advising corpus but only the test-case 2 was
used for final evaluation and ranking.

Settings
We used spaCy1 to tokenize utterances. For the advising
dataset, we added regular expressions to standardize the rep-
resentations of course IDs. For example, “EECS 370”, “370”
and “EECS370” were uniformly converted to “eecs370”.
For the Ubuntu 3.0 dataset, we added rules to normalize
command arguments such as “–help”, “-h” etc. For subtask
5 of the advising dataset, we also inserted a course title after
each course ID token in dialog utterances.

We initialized the word embedding layer using
GloVe2 (Pennington, Socher, and Manning 2014). Empir-
ically, 300-dimension word vectors trained on 840-billion
tokens gave us the best performances on both datasets.
For the advising dataset, we performed data augmentation
by randomly replacing dialog utterances and candidate
responses with paraphrases, yielding 500,000 dialogs. To
alleviate OOV issues, we evaluated different strategies. For
the advising dataset, we used averaged word vectors of a
course description to represent a course ID. For the Ubuntu
dataset, we pre-trained another set of 300-dimension GloVe
word vectors using the Ubuntu dataset. Then we combined
the domain vectors to the off-the-shelf pre-trained GloVe
vectors via summation. All word embeddings were kept
fixed during GSMN training to prevent overfitting. We also
experimented character-level embeddings but they did not
help on top of the above strategies. We used Adam (Kingma
and Ba 2015) to optimize the cross-entropy loss. The initial

1https://spacy.io
2https://nlp.stanford.edu/projects/glove



Model R@1 R@10 R@50 MRR
Dual-LSTM baseline 0.062 0.296 0.728 N/A
HGRU baseline 0.164 0.632 0.922 0.299
SMN w/ 1 hop 0.218 0.642 0.956 0.337
2 hops 0.198 0.620 0.938 0.320
3 hops 0.206 0.648 0.942 0.333
GSMN w/ 1 hop 0.220 0.632 0.954 0.343
2 hops 0.214 0.644 0.960 0.338
3 hops 0.214 0.628 0.956 0.335
1 hop + EK 0.220 0.644 0.956 0.343
2 hops + EK 0.224 0.654 0.944 0.354

Table 2: Baseline and GSMN results on the Flex advising
dev set. EK denotes external knowledge.

Model R@1 R@10 R@50 MRR
Dual-LSTM baseline 0.083 0.360 0.804 N/A
SMN w/ 1 hop 0.326 0.671 0.952 0.445
SMN w/ 2 hop 0.337 0.686 0.956 0.455
GSMN w/ 1 hop 0.379 0.733 0.973 0.497
2 hops 0.389 0.755 0.972 0.508
3 hops 0.398 0.761 0.976 0.515

Table 3: Baseline and GSMN results on the Ubuntu dev set.

Measure Ubuntu Advising Advising
- Case 1 - Case 2

Recall@1 0.475 0.494 0.18
Recall@10 0.814 0.85 0.562
Recall@50 0.978 0.98 0.94
MRR 0.595 0.6078 0.3069

Table 4: Official evaluation results on subtask 1 on Ubuntu
and advising test sets.

learning rate was set to 1e-4 and the batch size was fixed
at either 16 or 32 depending on computation resources. We
applied dropout factor 0.3 on all modeling layers including
word embedding to alleviate overfitting. We implemented
our models using TensorFlow (Abadi et al. 2015) and con-
ducted trainings on Nvidia GTI 1080TI GPUs. Each model
were trained on a single GPU for few days. GSMN training
took around 1-2 days to converge on the advising dataset
and 4-5 days on the Ubuntu dataset. We trained different
GSMN models by varying the number of hops from one to
three and the type of bi-RNN encoder either using LSTM
or GRU. The number of selected models for ensembling
was around 20. For subtask 1, we trained GSMN models
without external knowledge and thus excluded the long-term
memories. Our final results were produced via ensembling
many GSMN models and hierarchical-GRU baselines.

Experimental Results
Table 2 shows results using various models. Hierarchical
GRU baseline yielded substantial improvement compared to
the dual LSTM baseline provided by DSTC7, showing that

Measure Ubuntu Advising Advising
- Case 1 - Case 2

Recall@1 0.504 0.538 0.178
Recall@10 0.827 0.864* 0.608
Recall@50 0.98 0.986 0.944
MRR 0.6172 0.6455* 0.3149

Table 5: Official evaluation results on subtask 5 (with exter-
nal knowledge) on Ubuntu and advising test sets. * denotes
the 1st-place evaluation results.

word-level attention and hierarchical encoding of dialog his-
tory helped. In addition, GSMN outperformed hierarchical
GRU on all metrics. The best number of hops was not con-
sistent on various metrics. Incorporating external knowledge
into GSMN generally helped. Table 3 shows results on the
Ubuntu dev set. We obtained similar trend on model per-
formance. The gating mechanism helped more on Ubuntu
than advising dev set. Unfortunately, we were unable to fully
explore the effect of using long-term memories on Ubuntu
dataset due to time constraints. Table 4-5 present our official
evaluation results. Our proposed system after ensembling
ranked at the second place on advising and Ubuntu subtask
5 using external knowledge. Simple averaging of system en-
sembles degraded the overall evaluation metric by around 1
absolute point.

Discussion
Inspired by machine reading literature, hierarchical GRU
using word-level attention was much better than the dual
LSTM baseline. On the other hand, GSMN with utterance-
level self-attention turned out to be more effective and out-
performed hierarchical GRU. To the best of our knowledge,
most previous techniques for dialog response selection tasks
focused on enhancing the encoding of the last utterance in
a dialog through the attention mechanism. However, the last
utterance in a dialog history may not carry enough infor-
mation for inference. Co-references among utterances in a
dialog history and external domain knowledge exist and can
be modeled by self-attention, which is the key component of
GSMN.

To further explore the effectiveness of using self-attention
at utterance level, we trained and evaluated various GSMN
models but restricted the inputs to only the last utterance
of a dialog history. Consequently, only the last utterances
were enhanced by the memory networks and used to com-
pute similarity scores with response candidates. In Table 6,
we observed significant performance gains across all evalu-
ation metrics and model settings, confirming that modeling
co-references among dialog utterances via self-attention was
effective.

We also hypothesized that the long-term memories of
GSMN helped picking the most relevant response candi-
dates. We observed that many examples using a 2-hops
GSMN picked the correct response candidates successfully
with the help of external knowledge. In the first example
in Figure 6, the model correctly identified the fact that the



Model R@1 R@5 R@10 MRR
LU AU Gain LU AU Gain LU AU Gain LU AU Gain

1 hop 0.194 0.220 N0.026 0.592 0.643 N0.051 0.910 0.954 N0.044 0.317 0.343 N0.026
2 hops 0.208 0.214 N0.006 0.596 0.644 N0.048 0.920 0.960 N0.040 0.326 0.338 N0.012
3 hops 0.208 0.214 N0.006 0.616 0.628 N0.012 0.928 0.956 N0.028 0.329 0.335 N0.006

1 hop + EK 0.172 0.220 N0.048 0.578 0.644 N0.066 0.910 0.956 N0.046 0.294 0.343 N0.049
2 hops + EK 0.186 0.224 N0.038 0.602 0.654 N0.052 0.932 0.944 N0.012 0.319 0.354 N0.035

Table 6: Experiment results on advising dev set using only last utterance (LU) of every dialog as compared to using all utterances
(AU) of every dialog as inputs to Gated Self-attentive Memory Networks. EK denotes external knowledge.

student’s query was about the schedule of “eecs203” that re-
quired retrieving the class time from the course catalog. In
the second example, the model could only figure out that
“computational modeling of cognition” is the smaller class
with the help of external knowledge. Therefore, GSMN is
promising to incorporate external knowledge into dialog his-
tory encoding. Although our model achieved the highest
scores among the participating teams on the advising test-
case 1 in subtask 5, it did not perform as well on test-case
2. We inspected some examples in test-case 2 and realized
that our model made mistakes on “easy” examples. We dis-
covered that our model could not handle cases where the
subject and direct object of sentence were reversed, such as
“EECS281 is taken by most students in second semester” in-
stead of “Most students take EECS281 in second semester”.
We suspect that utterance encoding using recurrent neural
networks in GSMN might have heavily memorized the lan-
guage styles in the training data and failed to adapt to the
novel styles in test-case 2.

Figure 6: Sample dialogs from advising dev set which were
correctly answered by GSMN with the help of external
knowledge.

Conclusions
We have presented Gated Self-attentive Memory Network
for dialog response selection. Our proposed approach mod-
els dialog history and external knowledge as short-term and

long-term memories respectively. We encode each subject
entity in external domain knowledge as a sequence of key-
value pairs with pre-trained embeddings. Experimental re-
sults have shown that Gated Self-attentive Memory Network
effectively integrates external knowledge and dialog history
in an end-to-end fashion. We achieve the second place in the
subtask 5 of the DSTC7 response selection challenge. For
future work, we believe that improving the encoding power
of dialog history and external domain knowledge as well as
their interaction will be crucial for further performance im-
provement.
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