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Abstract

We introduce AQUAH, the first end-to-end language-based
agent designed specifically for hydrologic modelling. Start-
ing from a simple natural-language prompt (e.g., “simulate
floods for the Little Bighorn basin from 2020 to 2022”),
AQUAH autonomously retrieves the required terrain, forc-
ing, and gauge data; configures a hydrologic model; runs
the simulation; and generates a self-contained PDF report.
The workflow is driven by vision-enabled large-language
models, which interpret maps and rasters on the fly and
steer key decisions such as outlet selection, parameter ini-
tialisation, and uncertainty commentary. Initial experi-
ments across a range of U.S. basins show that AQUAH
can complete cold-start simulations and produce analyst-
ready documentation without manual intervention—results
that hydrologists judge as clear, transparent, and physi-
cally plausible. While further calibration and validation
are still needed for operational deployment, these early
outcomes highlight the promise of LLM-centred, vision-
grounded agents to streamline complex environmental mod-
elling and lower the barrier between Earth-observation
data, physics-based tools, and decision makers.

1. Introduction
Motivation. Hydrologic simulation and Earth observa-
tion analysis are indispensable for managing water re-
sources in a changing climate[8, 14, 15]. Yet frag-
mented workflows, steep technical requirements, and
lengthy model-setup times continue to restrict these ca-
pabilities—especially for non-experts and rapid-response
applications[3, 5]. A genuinely transformative solution is
therefore needed to dismantle these barriers and make ad-

vanced, equitable modeling tools broadly accessible.

Problem. Current hydrologic tools are not designed for
accessibility or automation; setup and data processing are
time-consuming [17]. Users must often manually download
data, configure models, and interpret outputs, requiring both
domain knowledge and programming skills. Additionally,
interpreting the results generated by the model is a barrier
and requires years of related domain experience. Although
this is not the sole problem for hydrologic science, we, in
this paper, propose to bridge the gap and enhance commu-
nication of hydrologic simulation.

Solution. We present AQUAH—Automatic Quantifica-
tion & Unified Agent in Hydrology—a next-generation,
vision-enhanced large-language-model (LLM) agent that
converts free-form user prompts into end-to-end hydrologic
simulations and narrative reports. Riding on the rapid ad-
vances in vision multimodal LLMs (VLMs), AQUAH lever-
ages state-of-the-art vision capabilities to interpret maps,
rasters, and other geospatial imagery on the fly, replacing
several expert-driven decisions—such as outlet selection,
parameter initialization—with reliable, data-driven automa-
tion that has already shown promising accuracy and consis-
tency in our experiments.

Our agent AQUAH stitches together geospatial data re-
trieval, Earth-observation forcing data, hydrologic models
(e.g., Coupled Routing and Excess Storage, CREST [24]),
and automated visualization in a seamless workflow.
Thanks to its data-agnostic, model-agnostic, plug-and-
play design, AQUAH lowers the entry barrier for users
without technical modeling backgrounds while still sat-
isfying domain experts. By demonstrating how vision-
enabled LLMs can assume formerly human-exclusive roles,
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AQUAH points the way toward fully autonomous hydro-
logic modeling agents.

2. Related Work
Multimodal and Tool-Augmented LLMs for Scientific
Reasoning. Recent advances in LLMs have demonstrated
remarkable capabilities in scientific reasoning when paired
with external tools and multimodal inputs [12, 16, 20].
Frameworks such as ReAct, Toolformer, and HuggingGPT
combine language understanding with programmatic con-
trol, enabling agents to interface with APIs, code environ-
ments, and databases [21, 26]. Emerging multimodal foun-
dation models (e.g., GPT-4o [18], Gemini [1], Kosmos-
2 [19]) have shown promise in parsing text, images, and
structured data for scientific workflows [20, 23]. How-
ever, their application to Earth system science remains lim-
ited, especially for domain-specific physical modeling like
hydrology. AQUAH builds on this foundation by integrat-
ing natural language processing with geospatial data tools,
Earth observation inputs, and model execution capabilities.

Earth Observation + AI for Sustainability. The fusion
of EO data and AI has advanced rapidly in applications
like land cover classification, crop monitoring, and disas-
ter mapping [4, 11, 25]. Vision-based foundation mod-
els (e.g., Segment Anything Model, SatMAE, Prithvi) have
pushed the frontier in remote sensing understanding [22].
Yet, most works focus on static scene understanding rather
than simulation-driven analysis. In hydrology, EO data like
CHIRPS rainfall or MODIS evapotranspiration are used in
modeling pipelines, but are rarely integrated via intelligent
agents or prompted via natural language.

Automation in Hydrologic Modeling. Traditional hy-
drologic models (e.g., CREST, EF5, SWAT, HEC-HMS) are
well-established for flood simulation and watershed analy-
sis [9, 13, 24]. However, they require significant manual
effort for setup, data integration, parameter calibration, and
output interpretation. Recent efforts in workflow automa-
tion (e.g., RavenPy, RavenWPS) have improved usability
[2], but these tools are not conversational, nor are they
driven by natural language or LLMs. Our work fills this
gap by combining the rigor of physics-based models with
the accessibility of LLM agents, forming a bridge between
EO, simulation, and narrative reporting.

3. AQUAH
3.1. System Architecture Overview
We design AQUAH as a modular language-agent frame-
work that bridges natural language interaction with Earth
observation data, geospatial processing, and hydrologic

simulation tools. The architecture (Figure 1) consists of:

Figure 1. Overview of the AQUAH architecture showing key com-
ponents and data flow.

• LLM Interface: Converts user-provided natural lan-
guage inputs into structured simulation instructions spec-
ifying locations, time periods, and analytical goals.

• Tool Executor Layer: Manages and executes Python-
based geospatial libraries, hydrologic model wrap-
pers, visualization routines, and statistical summarization
tools, orchestrating comprehensive data retrieval, simula-
tion, and analysis workflows.

• Dynamic Data Pipeline: Automatically fetches essen-
tial hydrological data such as digital elevation models
(DEM), precipitation, potential evapotranspiration (PET),
and observed discharge datasets, based on user input.

• Hydrologic Model Integration: Implements the CREST
model for hydrological simulations, utilizing dynami-
cally obtained datasets and providing initial parameter
estimates informed by Retrieval-Augmented Generation
(RAG) and LLM reasoning.

• Report Generation Engine: Automatically compiles
simulation outcomes, visualizations, and analytical sum-
maries into structured, publication-quality Markdown or
PDF reports.

• Interactive Feedback Loop: Allows users to refine
simulations via natural-language feedback—e.g., select-
ing alternative gauges or adjusting parameters. The
LLM parses these requests, updates model configurations



through the Tool Executor Layer, reruns the hydrologic
simulation, and regenerates an updated report, enabling
rapid, iterative scenario exploration.
AQUAH supports fully automated hydrologic simula-

tions driven entirely by natural language requests, lever-
aging LLM-powered image interpretation and decision-
making capabilities. It operates within data-available re-
gions, particularly across the contiguous United States
(CONUS), enabling both researchers and non-technical
users to effortlessly conduct detailed hydrologic analyses.

3.2. Earth Observation
AQUAH automatically harvests the inputs required for hy-
drologic simulation: (i) basin outlines from the U.S. Ge-
ological Survey (USGS); (ii) terrain products—including
a Digital Elevation Model, Drainage-Direction Map,
and Flow-Accumulation Map—directly from the Hy-
droSHEDS archive; (iii) precipitation forcing from the
Multi-Radar/Multi-Sensor (MRMS) system and potential
evapotranspiration (PET) fields from USGS, each clipped to
the basin envelope; and (iv) in-situ discharge records served
by USGS web APIs. Any missing files trigger fallback no-
tifications and sensible default values, so the workflow re-
mains robust across basins with heterogeneous data cover-
age. See Appendix A for more information.

3.3. Hydrologic Model
For runoff generation and routing, AQUAH employs the
distributed CREST (Coupled Routing and Excess STorage)
model [7, 24]. CREST solves basin water balance com-
ponents—precipitation partitioning, infiltration, evapotran-
spiration, and subsurface exchange—and propagates the re-
sulting flows using a kinematic-wave scheme. Model pa-
rameters are exposed for basin-specific calibration, with
first-guess values supplied automatically by AQUAH’s
language-agent modules. Details are in Appendix B.

3.4. Multi-Agent Architecture
As shown in Figure 2, AQUAH is implemented as a multi-
agent system: a collection of specialized, communicat-
ing agents—denoted A∗—that transform a free-form hydro-
logic modeling request into reproducible simulations, diag-
nostics, and reports. Each agent owns a well-defined re-
sponsibility and passes structured artifacts to the next, en-
abling transparent reasoning, easier debugging, and seam-
less extensibility to additional Earth-system tasks.
• Context Parser Agent (ACP) – Parses the user’s natural-

language request to extract structured simulation meta-
data—geographic extent, temporal window, and any spe-
cial constraints—and forwards this normalized envelope
to the Dataset Retriever ACP, ensuring that all subsequent
data acquisition is geographically and temporally aligned
with the user’s intent.

Figure 2. AQUAH multi-agent workflow across input–retrieval,
configuration–processing, and output–feedback stages. Agents:
ACP, ADR, AP (Perceptor), AOS, API, AO, ARW, and AFR.

• Dataset Retriever Agent (ADR) – Receives the spatio-
temporal envelope emitted by ACP; retrieves all manda-
tory forcing data and baseline geospatial layers (e.g.,
DEM, land cover, soil) intersecting that envelope; clips
each layer to the provisional basin mask; generates quick-
look visualisations that are forwarded to the Percep-
tor AP for morphological analysis feeding the OutletSe-
lector AOS and ParamInitializer Agent API; and converts
the curated datasets (mentioned in §3.2) into the file for-
mats and directory schema required by the Operator AO.

• Perceptor Agent (AP) – Serves as the vision-perception
module: ingests the visual artefacts rendered by ADR

(e.g., DEMs, flow-accumulation maps, preliminary hy-
drographs), employs a vision-augmented LLM to extract
quantitative descriptors of basin morphology, drainage
structure, and candidate gauge sites; supplies these de-
scriptors to the OutletSelector Agent AOS and ParamIni-
tializer Agent API, and later interprets simulated versus
observed hydrographs to deliver expert diagnostics for it-
erative refinement.

• OutletSelector Agent (AOS) – Consumes the candidate
gauge inventory and drainage descriptors extracted by
AP; applies hydrologic heuristics encoded in the system
prompt—such as favouring the gauge closest to the pour
point, with long, gap-free records and minimal upstream
regulation—to rank the options and designate the opti-
mal basin outlet; emits the selected gauge’s identifier and
coordinates to both the ParamInitializer API and Opera-
tor AO for subsequent simulation steps. The top example
of Figure 3 further illustrates the input and output of this
gauge selection process. We also provide a detailed case
study for VLM-based gauge selection in Section 5.3.



• ParamInitializer Agent (API) – Retrieves and parses do-
main manuals, peer-reviewed literature, and authoritative
web resources via RAG to map each model parameter’s
physical meaning and admissible range; ingests the pro-
cessed basin attributes from AP, the forcing datasets pre-
pared by ADR, and the selected outlet metadata; inte-
grates all evidence to generate a basin-specific, physically
plausible initial parameter vector that will seed the Oper-
ator Agent’s first simulation run.

• Operator Agent (AO) – Ingests the forcing
datasets (§3.2) and static rasters curated by ADR,
the outlet definition supplied by AOS, and the initial
parameter vector crafted by API; configures the selected
hydrologic models (§3.3) with these inputs; executes the
simulation over the user-defined time window; captures
full time-series outputs and performance diagnostics such
as NSCE, RMSE, and bias; and packages these artefacts
for downstream consumption by the Report Writer ARW

and Feedback Reflector AFR.
• Report Writer Agent (ARW) – Consolidates the sim-

ulation outputs and diagnostics from AO with the hy-
drograph analyses and visual artefacts supplied by AP;
weaves in contextual metadata captured throughout the
pipeline (basin description, forcing sources, parameter
settings); and auto-compiles a structured, reader-friendly
report enriched with maps, hydrographs, statistics, and
explanatory narrative for delivery to the end user.

• Feedback Reflector Agent (AFR) – Parses user com-
mentary on the delivered report, updates the internal
knowledge state, and, when revisions are warranted,
transmits explicit re-run directives—updated parameters,
alternative datasets, or extended periods—to the AO,
thereby closing the human-in-the-loop calibration loop.

Based on the above agents, AQUAH autonomously or-
chestrates the full hydrologic modelling pipeline—parsing
user requests, retrieving and preparing geospatial and forc-
ing data, extracting morphological descriptors via vision-
augmented LLMs, selecting optimal gauge outlets, initial-
izing model parameters, running simulations, generating di-
agnostic reports, and incorporating user feedback—without
requiring domain expertise or manual intervention.

4. Design of VLM-based Agents

AQUAH embeds cross-modal reasoning by equipping three
key agents with large-language-model vision capabilities:

AOS. Guided by the Outlet Gauge Selector prompt, the
vision–LLM pair first scans the basin map, DEM, and flow-
accumulation layers to automatically list every candidate
station and its attributes. It then applies the ordered rules
embedded in the prompt—exclude gauges on reservoirs, fa-
vor the lowest-elevation pour point with the largest drainage

Figure 3. Vision–reasoning interplay within the AQUAH pipeline.
The Perceptor Agent (AP) transforms visual artefacts into struc-
tured cues that steer three downstream modules: (i) basin-map
rasters yield gauge locations that the OutletSelector (AOS) ranks
to pick the outlet; (ii) geomorphic attributes extracted from the
same imagery combine with RAG-sourced documentation to let
the ParamInitializer (API) populate an initial parameter table; and
(iii) simulated hydrographs are interpreted to provide narrative
context for the Report Writer (ARW). The panels on the right
illustrate how each branch of the vision workflow materialises in
the final deliverable: outlet information, auto-selected parameter
values, and a consolidated hydrologic analysis overview.

area and longest gap-free USGS record, and perform a fi-
nal upstream-reservoir sanity check—iterating until a single
outlet meets all criteria and hydrologic common sense.

After ingesting the basin-with-gauges image (Fig. 3,
upper-left), the agent returns two plain-text lines:
Selected gauge: [ID] and Explanation:

[brief justification], providing both a machine-
readable choice and a concise, human-readable rationale.

Outlet Gauge Selector Prompt

You are a hydrologist who can interpret maps and select
the most appropriate USGS gauge to represent the **natu-
ral** basin outlet. The user supplies: (1) a base-map with
watershed boundary, (2) a DEM with gauges, and (3) a
flow-accumulation map with gauges.
Apply the following ordered rules when selecting ONE
gauge (earlier rules override later ones):
0) If the user’s text clearly mentions or implies a specific
gauge, city, or location, select it.



1) Exclusion – disqualify any gauge located downstream
of, or directly on, a reservoir/lake.
2) From the remaining gauges, prefer the one at the
lowest-elevation point on the basin boundary where flow
naturally exits (use DEM).
3) Prefer gauges capturing the largest drainage area and
highest flow-accumulation values.
4) Prefer gauges with extensive, reliable USGS discharge
records.
5) Second verification – re-check that the chosen gauge is
upstream of all reservoirs/lakes and sits at a natural outlet.
If not, discard it and re-evaluate.
Return your response in this format:
Selected gauge: [gauge ID number]
Explanation: [brief justification]

API. The initializer prompt is fed by two descriptive in-
puts. Basin description ({basin_desc}) is produced by
a VLM that “reads” the basin-map images (Fig. 3), then
writes a short paragraph summarising key traits such as
drainage area, relief, and dominant slope classes. Param-
eter guide ({guide}) comes from a RAG pipeline that
scans PDF manuals and web pages, condensing each source
into plain-language hints on plausible CREST parameter
ranges. Given these two narrative snippets, API returns a
one-line JSON object: a full CREST parameter vector plus
a brief justification for every value, providing both machine-
ready inputs and transparent reasoning.

CREST Parameter Initializer Prompt

You are a hydrologist. Using the parameter guide and
basin description, propose first-guess CREST parameters.
Basin description (from LLM image interpreta-
tion):{basin_desc}
Parameter guide (from LLM document/web summari-
sation):{guide}
Return exactly one line of JSON:
{"code":"crest_args =
types.SimpleNamespace(wm=<value>,
b=<value>, im=<value>, ...",
"explanation":"each param justified in
100-300 words"}
No Markdown, no extra keys.

ARW. Once the run finishes, ARW fills the Hy-
drological Report Writer prompt with two text frag-
ments: summary—an auto-generated paragraph that turns
stored run metadata (basin name, simulation window,
chosen gauge, key metrics) into plain language—and
figures_description—sentences returned by the vi-
sion LLM after inspecting the maps and hydrographs.
Guided by the prompt checklist, the agent assembles a
Markdown file that includes (i) a title and basin locator map;

(ii) cartographic layers for spatial context; (iii) rainfall-and-
discharge plots; (iv) a table of CREST parameters and NSE,
KGE, CC, bias, RMSE scores; and (v) a short discussion of
results and recommended next steps. The Markdown is then
rendered to PDF, giving users a compact, self-contained
overview of basin features, model behaviour, and forecast
quality (see report overview in Fig. 3,lower right).

Hydrological Report Writer Prompt

Description: Using the provided simulation metadata and
results
– summary: {summary}
– figures description: {figures_desc}

generate a complete Markdown report containing:
1. Title and Basin Information

– Level-1 heading with basin name.
– Basin & gauge map, basic data and brief introduc-
tion.

2. Analysis Sections
– Simulation vs observation comparison.
– Model performance metrics.
– CREST parameters.
– Conclusion/Discussion.

3. Required Images (![]()):
combined_maps.png, results.png

4. Data Tables (run arguments, metrics, parameters) –
vertical listing.

5. Discussion Points
– Model performance evaluation.
– Warm-up period considerations if bias < −90%.
– Recommendations for future runs.

Expected output: a complete, publication-ready Mark-
down report (no extra text after the report).

5. Experiments

5.1. Settings
Hydrologic backbone and geospatial toolkit. AQUAH
couples the distributed CREST model with standard open-
source GIS utilities (GDAL, Rasterio, Shapely, and Folium)
for raster reprojection, vector clipping, and mapping.

Large-language models. Three vision-capable LLMs are
benchmarked: GPT-4o (OpenAI) [18], Claude-Sonnet-
4 (Anthropic) [1], and Gemini-2.5-Flash (Google) [10].
Please refer to Appendix A for further details.

Earth-observation inputs. Daily precipitation forcing is
provided by MRMS (1 km grid); potential evapotranspira-
tion by USGS FEWS NET (1° grid); terrain layers—DEM,
drainage-direction, and flow-accumulation—by Hy-
droSHEDS at 3-arc-second ( 90 m) resolution; and



Model Model Comp. Sim. Results Reasonableness Clarity Average
claude-4-opus 7.51 5.60 6.97 7.95 7.01
claude-4-sonnet 7.43 5.46 6.77 7.49 6.79
gpt-4o 6.74 5.89 6.06 6.51 6.30
o1 7.11 4.80 6.23 6.94 6.27
gemini-2.5-flash 6.91 4.68 6.28 6.57 6.11

Table 1. Quantitative evaluation of hydrological-report generation. Bold values mark the best score in each column.

discharge observations by USGS NWIS, which also
supplies gauge metadata such as drainage area.

End-to-end automation. User prompts are decomposed
by AQUAH’s agent stack into structured tasks that au-
tonomously handle data download, model runs, and post-
processing. The workflow therefore spans geospatial pre-
processing, Earth-observation ingestion, hydrologic simu-
lation, and report generation without manual intervention.

5.2. Benchmark & Test Results
To quantify the quality of the hydrological–simulation re-
ports produced by our AQUAH, we conducted a two–tier
evaluation. All reports were anonymized and randomly or-
dered to ensure that evaluators were blind to the source
model, thereby eliminating potential bias.

Domain–expert review. Several professional hydrolo-
gists were asked to score each report on a 10-point scale (1
= poor, 10 = excellent) along four facets that are critical for
decision-grade hydrological studies: Model Completeness,
Simulation Results, Reasonableness, and Clarity. Figure8
in Appendix C shows the detailed human judge interface.

LLM co-evaluation. In addition, we used the latest
OpenAI gpt-o3 model as an impartial, large-scale lan-
guage model (LLM) judge. This hybrid protocol mitigates
individual-expert variance while leveraging the consistency
of an automated evaluator.

For each axis we take the arithmetic mean of the human
and LLM scores; the Average column is the unweighted
mean across the four axes. The numerical results are sum-
marised in Table 1. Overall, claude-4-opus achieves
the highest average score (7.01), leading or tying on three
of the four criteria, and outperforming all other contenders
by at least 0.22 points. Refer to Appendix C for further
evaluation details.

The clear margin of claude-4-opus indicates that,
for our task setup, higher model–completeness and more
coherent reasoning translate directly into more actionable
hydrological insights. Conversely, despite producing the
strongest raw simulation summaries, gpt-4o lags on clar-

ity, underscoring the need for balanced optimisation across
all evaluation axes.

5.3. Selected Case Studies
LLM-Vision-driven outlet gauge selection. The
outlet–selection agent AOS receives two georefer-
enced rasters—the flow-accumulation map and the
DEM—together with vector layers of candidate gauges and
their attributes (elevation, drainage area).

Figure 4. Gauge-selection frequency across three basins (rows
a–c) and three LLMs (columns: GPT-4o, Claude-Sonnet-4,
Gemini-2.5-Flash). Each basin–LLM combination was run ten
times; gauge labels are shaded from black (never selected) to deep
red (selected in all 10 runs).

At inference time a VLM (GPT-4o, Claude-Sonnet-4,
or Gemini-2.5-Flash) is prompted with these layers plus
a short ordered rule set: (i) respect any user-specified
gauge; (ii) disregard stations situated on or below reser-
voirs/lakes; (iii) favour the lowest-elevation gauge on the



basin perimeter; (iv) prefer larger drainage areas and higher
flow-accumulation values; and (v) break remaining ties with
data-record quality. All gauges inside the watershed, along
with those lying just downstream of the polygon, are con-
sidered so that official outlets positioned slightly outside the
boundary are not overlooked.

Figure 4 summarises the agent’s behaviour across three
contrasting basins. In the simple, single-outlet catchment
(row a) every LLM converges on the same gauge in al-
most every trial. The more dendritic basin in row b exposes
subtle differences: GPT-4o and Claude-Sonnet-4 nearly al-
ways pick the hydrologically dominant tributary, whereas
Gemini-2.5-Flash splits its choices between two interior
stations, reflecting ambiguity in topographic cues. Row c
highlights the importance of contextual constraints—when
a major reservoir sits just upstream of the nominal outlet,
all models occasionally retain the regulated gauge unless
the prompt explicitly flags reservoir positions.

LLM-based first-guess parameterisation. Reliable cal-
ibration begins with a defensible first guess, yet selecting a
plausible vector of hydrologic model parameters normally
demands years of field intuition and many trial–error cycles.
AQUAH tackles this bottleneck with the agent API, which
blends retrieval-augmented generation and vision reason-
ing. The agent consults CREST manuals(ingested as PDFs
and web pages) to learn each parameter’s physical role
and admissible range, while simultaneously analysing basin
rasters—DEM, FAM, DDM, and a land-cover basemap—to
infer slope, drainage density, soil moisture capacity, and
impervious fraction. Guided by this fused knowledge, the
VLM proposes a basin-specific start vector (e.g. WM , B,
KE, see Appendix B for more information), runs CREST
once, and logs the resulting skill scores.

Figure 5b–c displays the distributions of CC and NSCE
obtained from ten independent initialisations per LLM,
while panels (d–f) show each model’s best hydrograph and
its associated parameter set. The text blocks underneath
capture the LLM-generated rationale—for example, boost-
ing WM in forest-dominated headwaters or lowering B
over urban sub-catchments. Across the test basin the agent’s
proposals consistently land within physically reasonable
bounds and, in several cases, achieve near-calibrated per-
formance on the very first run. These results indicate that
modern vision-LLMs already possess a rudimentary grasp
of hydrologic parameter semantics, substantially shortening
the path from “cold start” to productive calibration.

6. Discussion
Gauge–Outlet Selection (Fig. 4). Row (a) represents a
straightforward basin; all three LLMs consistently iden-
tify the true outlet, confirming that the rule set is suffi-
cient for simple landscapes. Row (b) introduces compet-

ing tributaries. The correct outlet is gauge 03453500;
GPT-4o selects it in 6/10 trials, Claude-Sonnet-4 achieves
9/10, whereas Gemini-2.5-Flash never resolves the ambigu-
ity. Row (c) tests reservoir awareness: gauge 07326000
lies immediately downstream of a dam and should be re-
jected. All models struggle—most runs still choose the
regulated site—although GPT-4o avoids it in 40 % of tri-
als. These results highlight that discerning human regula-
tion from natural flow remains challenging for current main-
stream LLMs. Incorporating additional Earth-observation
cues (e.g. reservoir masks) or employing stronger reasoning
models with tailored prompts may mitigate this limitation.

Parameter-Initialisation Performance (Fig. 5). Across
ten independent initialisations, the three LLMs exhibit dis-
tinct variance patterns. GPT-4o delivers the single high-
est CC/NSCE score but shows the widest spread, indicat-
ing strong stochasticity between runs. Claude-Sonnet-4 is
the most consistent: its box-plots are narrow and uniformly
positive, making it the most reliable performer for this basin
despite not achieving the absolute best score. Gemini-2.5-
Flash also displays high run-to-run variability but, unlike
GPT-4o, its median skill is noticeably lower, leading to
overall weaker performance. In sum, GPT-4o can produce
outstanding results but requires multiple attempts; Claude
offers dependable, high-quality starts.

Although none of the first-guess parameter sets is fully
optimal, each agent delivers values of the correct order
of magnitude—an outcome far superior to ad-hoc, man-
ual guessing and crucial for a successful first run. Look-
ing forward, the CREST outputs can be fed back to the
ParamInit Agent, enabling RAG-guided, step-wise adjust-
ments that iteratively refine parameters. Such a feedback
loop would provide directionally consistent, interpretable
calibration without exhaustive trial-and-error.

Limitation. Our study reused one prompt tem-
plate—originally tuned for the OpenAI API—across
all language-model back ends, which, while convenient for
benchmarking, may not fully leverage each model’s unique
formatting or capabilities. The prototype also depends on
publicly hosted data and inference services (e.g., USGS,
MRMS, and a cloud LLM), so regional access limits or
temporary outages could reduce functionality. Future work
will investigate model-specific prompt tuning and local or
cached data to ease these constraints.

7. Conclusion
We present AQUAH, the first end-to-end hydrologic-
simulation agent that translates free-form language requests
into physically consistent model runs and publication-ready
reports. By coupling a large language model with vision



Figure 5. Performance summary for the Maine Coastal Basin. (a) Basin boundary and gauge locations. (b) Box-plot of CC from ten
parameter-initialization runs for each LLM (GPT-4o, Claude-Sonnet-4, Gemini-2.5-Flash). (c) Corresponding NSCE box-plots. (d–f)
Best-performing hydrographs for each LLM, annotated with their error metrics and calibrated CREST parameter sets. The lower text
blocks provide the LLM-generated rationale for the chosen parameter values.

modules for DEM reading, gauge detection, and parameter
inference, AQUAH automates the full workflow—from data
acquisition through CREST simulation to visualization—
requiring neither domain expertise nor coding. Benchmarks
across several mainstream LLMs show AQUAH delivers
decision-grade outputs with low entry barriers.

Beyond hydrology, the modular design illustrates how
LLM + CV synergies can spawn specialised agents for other
simulation-driven sciences across the globe. We argue that
building task-aware toolchains around foundation models
will become a core paradigm for next-generation platforms,
enabling rapid, democratised access to complex numerical
engines across Earth-system, engineering, biomedical, en-
vironmental, and climate domains.
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A. Experimental Setup
Implementation framework. All agents are orchestrated with crewAI v0.75.01, which provides the task queue, tool
interface, and inter-agent messaging used throughout AQUAH.

ParamInitializer workflow. For illustration we focus on the ParamInitializer Agent, whose logic is divided between two
Python functions. describe_basin_for_crest() prompts a vision-enabled LLM to summarise basin physiography
from DEM, flow-accumulation, drainage-direction rasters, and a locator map; estimate_crest_args() then launches a
CrewAI agent that mines PDF manuals and websites to propose a physically plausible CREST parameter vector. A provider-
agnostic wrapper converts images to the base-64 or PIL.Image formats required by OpenAI, Anthropic, or Gemini APIs;
oversized payloads are iteratively down-scaled and JPEG-compressed to satisfy the strictest quota (5 MB for Claude).

Large-language models. Five mainstream models are queried via their native endpoints: GPT-4o (gpt-4o), Claude-4
Sonnet (claude-4-sonnet-20250514), GPT-o1 (o1), Claude-4 Opus (claude-4-opus-20250514), and Gemini-
2.5 Flash (gemini-2.5-flash-preview-05-20). Text-only prompts use a deterministic temperature of 0, whereas
vision prompts use 0.3.

Earth-observation data. Input layers are fetched on demand from public repositories: HydroSHEDS 90 m DEM, flow-
accumulation, and drainage-direction rasters (https://hydrosheds.org/); USGS 3DEP high-resolution DEMs
(https://apps.nationalmap.gov/downloader/); MRMS precipitation archives (https://mtarchive.
geol.iastate.edu/); FEWS-NET potential-evapotranspiration grids (https://earlywarning.usgs.gov/
fews/product/81); and USGS NWIS discharge records (https://waterdata.usgs.gov/nwis). All layers
are clipped to the basin polygon produced by the CONTEXTPARSER agent and re-projected to a common grid before model
execution.

B. CREST
EF5/CREST model description. The EF5/CREST (Coupled Routing and Excess STorage) hydrologic modelling frame-
work—originating from the University of Oklahoma in collaboration with NASA—combines distributed water-balance cal-
culations with kinematic-wave routing to deliver rapid, spatially explicit flood simulations. Over the past decade it has
evolved into a versatile research and operational tool: CREST-iMAP couples hydrologic and hydraulic components for real-
time inundation mapping [13]; continental-scale calibration and validation have demonstrated robust skill across the CONUS
domain [6]; the framework has been leveraged to diagnose forcing uncertainties such as the impact of IMERG precipitation
upgrades on streamflow prediction [27]; and a recent synthesis highlights continued advances and emerging applications
across global flood forecasting, drought assessment, and land–surface interaction studies [15]. These studies underscore the
model family’s breadth and its suitability for the automated, agent-driven workflows pursued in AQUAH.

EF5/CREST Parameter Cheat-Sheet. The EF5/CREST hydrologic model framework separates calibration parameters
into two broad blocks: (i) runoff generation governed by the CREST/Water-Balance scheme and (ii) kinematic-wave routing
[7, 15]. Tables 2 and 3 list the key parameters, their recommended search ranges, and the qualitative hydrologic response
when each value increases. This compact sheet is intended as a quick reference for modellers when setting up automatic or
manual calibration routines.

C. Evaluation Criteria
The quality of each AQUAH-generated simulation is assessed through a two-tier protocol that combines objective statistical
metrics and human expert review. The former quantify the numerical agreement between simulated and observed discharge,
while the latter capture practitioner-oriented aspects such as interpretability and report readability.

Objective Verification Metrics Following established hydrological practice, five complementary statistics are evaluated
over the full period (see Table 4). These are: the Nash–Sutcliffe efficiency (NSE, −∞–1, ideal 1), which summarises over-
all predictive skill; the Kling–Gupta efficiency (KGE, ideal 1) that balances correlation, bias and variability; the Pearson

1https://github.com/crewAIInc/crewAI
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Figure 6. A schematic of the hydrologic processes represented by the latest EF5/CREST model

correlation coefficient (CC, ideal 1); the root mean square error (RMSE), where lower values indicate smaller deviations;
and the relative bias (BIAS), whose optimum is 0. Together they diagnose both the accuracy and reliability of the CREST
simulations across all flow regimes.

Final Report Evaluation Beyond the objective metrics, every report is first uploaded to the latest o3 large-language model
for automated grading and then independently assessed—under blinded conditions—by a team of professional hydrologists,
both parties applying the same four-axis rubric. Model Completeness gauges the suitability of data sources, openness of
parameter disclosure, and overall workflow transparency; Simulation Results reflects the fidelity of hydrographs and accom-
panying statistics, including treatment of uncertainties; Reasonableness judges the physical plausibility of parameter choices,
underlying assumptions, and recommended next steps; and Clarity measures readability, logical flow, figure and table quality,



Table 2. CREST / Water-Balance parameters

Parameter Meaning Range Effect when value increases

WM Maximum soil-water storage capacity (mm) 5–250 More storage ⇒ less direct runoff.
B Infiltration curve exponent 0.1–20 Steeper curve ⇒ more surface runoff.
IM Fraction of impervious area 0.01–0.50 Larger imperviousness ⇒ more runoff.
KE PET utilisation / evapotranspiration coefficient 0.001–1.0 Higher ET loss ⇒ less runoff.
FC Saturated hydraulic conductivity proxy (mm h−1) 0–150 Faster infiltration ⇒ less runoff.
IWU Initial soil-water content (mm) 0–25 Wetter initial state ⇒ higher early runoff.

Table 3. Kinematic-wave routing parameters

Parameter Meaning Range Effect when value increases

TH Drainage-area threshold (km2) 30–300 Smaller threshold ⇒ finer channel network.
UNDER Interflow velocity multiplier (m s−1) 0.0001–3.0 Larger velocity ⇒ quicker runoff response.
LEAKI Leakage factor from interflow layer 0.01–1.0 Higher leakage ⇒ faster hydrograph rise.
ISU Initial subsurface storage unit 0–1× 10−5 Non-zero may cause spurious early peak; keep

near zero.
ALPHA Muskingum–Cunge α for channel cells 0.01–3.0 Larger value slows flood-wave translation.
BETA Muskingum–Cunge β for channel cells 0.01–1.0 Bigger β likewise slows and attenuates wave.
ALPHA0 α for overland/non-channel cells 0.01–5.0 Controls overland flow speed; β fixed at 0.6.

Table 4. Verification metrics used in this study. Qt
obs (Qt

sim) is the observed (simulated) discharge at time step t; Qobs and Qsim are their
respective means; µ and σ are the mean and standard deviation; T is the total number of time steps. CC – Pearson correlation coefficient,
BIAS – relative bias, RMSE – root mean square error, NSE – Nash–Sutcliffe efficiency, KGE – Kling–Gupta efficiency with α = σsim/σobs

and β = µsim/µobs. The last column gives each metric’s theoretical range and its perfect value (in parentheses).

Metric (abbr.) Equation Range (perfect)

Nash–Sutcliffe efficiency (NSE) NSE = 1−
∑T

t=1(Q
t
obs −Qt

sim)
2∑T

t=1(Q
t
obs −Qobs)

2
(−∞, 1] (1)

Relative bias (BIAS) BIAS =
1

T

T∑
t=1

(
Qt

sim −Qt
obs

)
(−∞, ∞) (0)

Root mean square error (RMSE) RMSE =

√√√√ 1

T

T∑
t=1

(
Qt

sim −Qt
obs

)2
[0, ∞) (0)

Correlation coefficient (CC) CC =

∑T
t=1(Q

t
sim −Qsim)(Q

t
obs −Qobs)√∑T

t=1(Q
t
sim −Qsim)

2

√∑T
t=1(Q

t
obs −Qobs)

2

[−1, 1] (1)

Kling–Gupta efficiency (KGE) KGE = 1−
√

(CC − 1)2 + (α− 1)2 + (β − 1)2 (−∞, 1] (1)

and adherence to scientific-writing norms. Each axis is scored on an integer 0–10 scale by the expert panel and the LLM;
the two values are averaged to obtain the axis score, and the unweighted mean across the four axes yields an overall quality
index (see the UI mock-up in Fig. 7).

Example Analysis Figure 8 contrasts two reports generated from the identical prompt “I want to simulate the streamflow
of the Mad–Redwood basin from 2020 to 2022.” Panel (a) shows B5_030.pdf, produced by the gemini-2.5-flash agent,
while panel (b) shows B5_223.pdf from gpt-o1. Although both agents follow the same workflow, their outputs diverge
noticeably: B5_030 omits several key figures, lowering its Model Completeness score, and its poor NSE drags down the
Simulation Results. In contrast, B5_223 includes all requisite graphics and attains a substantially better NSE (0.578), which,



Figure 7. Human-grading interface used in this study. Experts (and an LLM co-evaluator) assign 0–10 star scores on four axes—Model
Completeness, Simulation Results, Reasonableness, and Clarity—and record whether they would adopt the agent in professional hydrologic
work.

together with clearer recommendations, yields higher marks across all four grading axes and a superior overall index. This
example underscores how agent choice can strongly influence both the technical fidelity and presentation quality of first-pass
hydrologic simulations.



Figure 8. Side-by-side grading example for two hydrological reports generated by different LLM agents. Panel (a) shows the report
B5_030.pdf produced by gemini-2.5-flash, while panel (b) displays B5_223.pdf from gpt-o1. Both were created from the same
prompt, “I want to simulate the streamflow of the Mad–Redwood basin from 2020 to 2022.” The table underneath presents the averaged
human + LLM scores on the four-axis rubric. Owing to missing figures, B5_030 lags in Model Completeness; its poorer NSE also lowers
the Simulation Results score. In contrast, B5_223 achieves notably higher marks across all axes, leading to a superior overall quality index.
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