
JRBridge: A Framework of Large-Scale Statistical Computing for R

Xia Xie, Jie Cao, Hai Jin, Xijiang Ke, Wenzhi Cao
Services Computing Technology and System Lab

Cluster and Grid Computing Lab
School of Computer Science and Technology

Huazhong University of Science and Technology, Wuhan, 430074, China
email: hjin@hust.edu.cn

Abstract—Demands for highly scalable parallel data processing
platforms is raising due to an explosion in the number of
massive-scale data intensive applications both in industry and
in sciences. Performing statistical computing over huge data
repositories poses a significant challenge to existing statistical
software and computational infrastructure. After analyzing
various open source computational infrastructures and their
programming paradigm APIs, the results have shown that
most of them are JVM based, and their APIs are given as Java
interfaces or abstract classes. This paper proposes a generic
framework JRBridge, which can integrate R and JVM-based
computational infrastructures by generating Java APIs code
wrapper around the native R code automatically and handling
type conversion. Using this framework, we build a distributed
statistical computing environment by integrating R with
Hadoop. With the Hadoop Distributed File System plugin, it
brings a way to store and access datasets with millions of
objects. With MapReduce plugin, it brings a natural
environment to code MapReduce algorithms in R. The
experiment result shows JRBridge scales linearly with the size
of the datasets and thus provides a scalable solution for large-
scale statistical computing in R.

Keywords- R Language; JVM; Hadoop; MapReduce;
Statistical Computing Method

I. INTRODUCTION

Data explosion springs up in many research fields such as
astronomy, information retrieval, and social network.
Knowledge buried in these enormous datasets is so
invaluable that the ability to apply sophisticated statistical
analysis methods to the data is becoming more and more
essential. Performing statistical computing over huge data
repositories poses a significant challenge to existing
statistical software and data management systems.

Statistical software provides rich functionalities for data
analysis, which only can handle limited amounts of data. For
example, popular tools like R operate entirely in main
memory with a single server. The system provides a
comprehensive environment for statistical computing,
including a concise statistical language, well tested libraries
of statistical algorithms for data exploration and modeling,
and also visualization facilities. We focus on the highly
popular R statistical analysis program, which have overtaken
other tools with closer to 43% data miners in 4th annual data
miner survey [22-23]. Comprehensive R Archive Network
(CRAN) contains a library with nearly 3000 add-in packages,
covering areas such as linear and generalized linear models,

statistical tests, time series analysis, classification, clustering.
They simply fail when the data becomes too large. Some
analysts try to avoid this shortcoming by using the most
powerful machine available, but vertical scalability is
inherently limited and expensive. Others try to work only on
the subsets or samples of the data [5].

On the other hand, large-scale computational
infrastructures can scale to data in petabyte scale, but provide
only insufficient analytical functionalities. There are many
infrastructures designed for different computational
requirements, such as Hadoop and Dryad [14] for dataflow
computing, Pregel [7] and Giraph [8] for graph computing,
Haloop [26], Twister [10] and Spark [15] for iterative
computing, Yahoo! S4 [13] and Twitter Storm [17] for
stream computing. Only Hadoop and Storm support multi-
language programming by Hadoop Streaming and Storm
Multi-Language protocol. Most of them only open their own
low-level APIs for users, and users cannot write code in R
directly to support own their programming paradigm at the
same time. Besides this, there are some high-level
declarative languages such as Jaql [12], Pig [20] or Hive [1]
for Hadoop, but they do not deliver the rich analytic
functionality supported by other statistical software like R.

In a word, R provides rich functionalities for data
analysis, but cannot support large datasets. On the contrary,
large-scale computational infrastructures scale to large
datasets, but have limited analytical functionalities and most
of them cannot bring their computational capability to R.

We propose a framework JRBridge which can integrate R
and JVM-based computational infrastructures. The idea is to
generate Java APIs code wrapper around the native R code
automatically, handle type interchange between R and Java
transparently. Using this framework, we build a distributed
statistical environment by integrating R with Hadoop. With
the Hadoop Distributed File System (HDFS) plugin, it brings
a way to store and access datasets with millions of objects in
HDFS. With MapReduce [11] plugin, it brings a natural
environment to code MapReduce algorithms in R.

II. RELATED WORKS

Prior works on large-scale data process in R are classified
by scaling out R, SQL-based integration and Hadoop
Streaming based integration.

2012 IEEE Asia-Pacific Services Computing Conference

978-0-7695-4897-5/12 $26.00 © 2012 IEEE

DOI 10.1109/APSCC.2012.74

27

A. Scaling Out R
Existing approaches to bring R into large-scale data

process are mainly classified by low-level message passing
and high-level automatic parallelization.

Both Rmpi [9] and rpvm [16] are message-passing type.
They are simple wrappers for their respective parallel
computing middleware. Usage of message-passing systems
require significant expertise in parallel programming such as
how to define explicit data distribution and inter-processor
communication schemes. Most of all, these systems require a
tightly connected cluster, where fault tolerance, redundancy
and elastic are not provided. At the higher level, there have
been some promising systems which can support automatic
parallelization such as pR [18].

Here are two major innovations in the recent pR design.
The first one is runtime analysis/parallelization. They
perform dynamic dependency analysis before interpreting R
statements; identify tasks and loops that can be parallelized.
The second one is that they perform incremental analysis
which delays the processing of conditional branches and
dynamic loop bounds until the related variables are evaluated.
Key feature of pR is that it analyses a sequential R source
script dynamically and transparently, and parallelizes its
execution accordingly. The results of partial execution are
collected to perform further analysis in runtime. The
framework does not require any modifications to the native R
environment. But this works is only for non-interactive batch
jobs and sequential processing tasks where the dataset fits in
main memory on a single machine.

B. SQL-based Integration
There are many SQL-based data warehouse systems

designed to simplify tasks with writing analysis flows on
Hadoop, such as Hive, Pig, Jaql. These systems mostly
provide a mechanism to project structure schema on data and
query the data using a SQL-like language. RHive [19] is the
bridge between R and Hive, and Ricardo [24] is the bridge
between R and Jaql. Ricardo is also suboptimal to beat a
custom-written Hadoop job in Java, for the inner data
serialization and SQL parsing phrases taking additional time.

Ricardo proves that many deep analytical problems can
be decomposed into a “small-data part” and a “large-data
part”. It consists of three components: small-data part
executed in R, large-data part, and R-Jaql bridge. The large-
data part is executed in the Hadoop/Jaql Data Management
System (DMS). R-Jaql bridge provides communication and
data conversion facilities for integrating these two different
platforms.

R serves as an interactive environment for the data
analyst. For classical R usage, the data itself is not memory-
resident in R. Instead, the base data is stored in a distributed
file system with Hadoop cluster, which consists of a set of
worker nodes that both store data and perform computations.
Jaql is an open source data flow language, and it provides a
high-level language to process and query Hadoop data,
compiling into a set of low-level MapReduce jobs with
JSON views to solve different data type between R and
Hadoop. The bridge with a R package provides integration
module between Jaql and R.

Moreover, Ricardo does not support writing MapReduce
algorithms in R directly. If Ricardo packages cannot meet the
demands of particular analysis or analysts want to write their
own special algorithms, they have to re-implement the
lower-level Java MapReduce code and then bind them to
Jaql as user defined functions, which means an analyst who
uses Ricardo needs to be an expert in Jaql and Java
MapReduce programming at the same time.

C. Hadoop Streaming based Integration
Hadoop provides an API that allows user to write map

and reduce functions in languages except Java. Hadoop
Streaming uses UNIX standard streams as the interface
between Hadoop and user’s executable program, so user can
choose any languages which can read standard input and
write to standard output for MapReduce program.

With Hadoop Streaming, R user only can focus on the
input and output data interchange between R and Java. Since
the type conversion gap exists between R and Java,
serialization technologies must be used in these multiple-
language systems. Both RHIPE [25] and RHadoop [23] are
based on Hadoop Streaming. Users write the map and reduce
function in native R code, which executes on the original R
environment installed on each node. RHIPE uses Google’s
Protobuf library and RHadoop uses RJSONIO [6] library to
solve the problem of data type transformation between Java
and R.

So Hadoop Streaming can give a way for writing
MapReduce algorithms in R directly, which means it is more
smart and convenient than SQL-based integration for users
to design their own algorithms. Storm Multi-Language
protocol is another streaming-like integration method.

Till now, it shows that only few infrastructures are
integrated with R, such as MPI, Hadoop, and Storm. These
methods are too special to use by other infrastructures such
as graph computing or streaming computing. Our motivation
is to design a generic framework for integrating R with
various infrastructures to make R benefited from decades of
experience on large-scale data process.

III. DESIGN PHILOSOPHY

A. Offline Batch Processing
Hadoop composes with HDFS bundled with an

implementation of Google’s MapReduce paradigm and
offers a scalable infrastructure for processing massive
amounts of data.

HDFS takes care of the files distribution and replication
across the nodes in Hadoop cluster. HDFS is written in Java,
the Java class DistributedFileSystem is an implementation of
the abstract class FileSystem, which is the way end-user code
interacts with. An application that wants to store/fetch data
to/from HDFS should construct a DistributedFileSystem Java
object with Hadoop configuration, and then call the member
function (API functions) of this object to access the HDFS.

We name this kind of API with the following features as
Static Function API (SF API):
� The core functions of this kind of API are static and

fully implemented by the backend infrastructures. There

28

is no need for developer to write any new embedded
codes to achieve those functions.

� Most of SF API can be looked as a Remote Procedure
Call (RPC) with arguments and a return value.
Developers only need a runtime environment as a client
to send the RPC request with specified arguments; and
then the reply will be received and processed by the
backend. At the end of RPC, the backend sends a
response back to the client.

MapReduce programming model and API are briefly
presented as follows:
� The computation takes a set of input key/value pairs <K1,

V1>.
� Mapper takes an input pair <K1, V1>, and produces a set

of intermediate key/value pairs <K2, V2> by calling the
map method written by user.

� Reducer accepts an intermediate key/value pairs <K2,
V2>, merges together these values to form a possible
smaller set of values, and produces a set of output
key/value pairs <K3, V3> by calling the reduce method
written by user.

� If a combination function is used, it is the same form for
the reduction function (and is an implementation of
reducer in Java), except its output types are the
intermediate key and value types <K2, V2>, so they can
feed the reduce function.

By default, the user must write MapReduce program in
Java by extending the Mapper and Reducer class with re-
implemented map and reduce methods.

We name this kind of API with the following features as
User Define Function API (UDF API):
� The most important difference between SF API and

UDF API is that the functions cannot be fully
implemented by the backend alone, which is only a
framework. Developers should write code embedded
into the framework to implement the user define
function. Developers should implements the map and
reduce method for their special UDF API.

� There must be a runtime environment on each node
since the user code must be distributed to each work
node of the cluster. So a type conversion mechanism
between R and Java is also needed here.

B. Bulk Synchronous Parallel Model Graph Computing
Bulk Synchronous Parallel (BSP) model is used in many

graph computing infrastructures such as Google Pregel [7]
and Apache Giraph [8]. User should switch to the “think like
a vertex” model of programming. It can be simply defined as
the combination of three attributes:
� A number of components just like the vertex in a graph,

each vertex performing processing, keeping graph status,
or sending message to other components in graph.

� A router that delivers messages point to point between
pairs of components.

� Facilities of synchronizing all or subset of the
components at special condition. A computation consists
of a sequence of super-steps. In each super-step, every
component is allocated to a task consisting of several

combinations of local computation steps, message
transmissions and message arrivals from other
components. The machine proceeds to next super-step
until a global check is made to ensure the last super-step
has been completed by all components.

Take the open source Giraph as an example. At first, the
master gets the appropriate number of splits for the
application and writes them to Zookeeper [21]. Then the
worker will read vertices from one or more splits, and
executes the compute method for every vertex assigned to
this worker per super-step and buffer the incoming messages
to every vertex for the next super-step.

C. Stream Computing
There are many programming model used in stream

computing such as Pub-Sub model for IBM SPC [2], Actors
model for Yahoo! S4, Spout\Bolt model for Twitter Storm.
The S4 and Storm are open source infrastructures.

S4 is written in Java. Developers write PEs in the Java
programming language. PEs are assembles into applications
using the Spring Framework. The processing element API is
fairly simple and flexible UDF API. Developers essentially
implement two primary handlers: an input event handler
processEvent() and an output mechanism output(). In
addition, developers can define some state variables for the
PE. processEvent() is invoked for each incoming event of the
types subscribed by PE. This method implements the logic
for input event handing, typically an update of the internal
PE state. output() method is an optional method that can be
configured for invoking in variety of ways. It can be invoked
either at regular time intervals t, or on receiving n input
events, in the case where n=1. output() method implements
the output mechanism of the PE, typically to release internal
state of the PE to some external systems.

D. SF API and UDF API Integration Pattern
With above analyses on how to integrate R with popular

open source infrastructures, we deduce the common pattern
as follows:
� Most open source computational infrastructures are

JVM-based, and the default APIs are written in Java.
� Most APIs are simple and flexible, and can be classified

by SF API and UDF API.
In order to integrate R with these open source

computational infrastructures with above common patterns,
we need to design four key components: an engine to
interpret R from Java, R2J (convert R objects to Java objects),
J2R (convert Java objects to R objects), Java class loader and
executor in R environment.

IV. PROTOTYPE SYSTEM IMPLEMENTATION

The module diagram (Fig.1) of system consists of three
layers: plugin layer, common framework layer, and
computation infrastructures layer. When users write source
codes with the familiar syntax in R statistical programming
language, they can also use the SF API and UDF API
provided by the plugin layer, with which R code can be
transformed by common framework layer to run on the
variety of open source computational infrastructures in the

29

computation infrastructure layer. So users can do large-scale
statistical computing in R by integrating R with computation
infrastructures.

The four components build a bridge between R and JVM-
based open source computational infrastructures by
cooperation with the SF API and UDF API integration model.

Computational Infrastructures Layer

JVM-based Interpreter for R

Java Class Loader and Executor in R Environment

Offline Batch Process BSP Model Graph
Computing Stream Computing

R
2J

 T
yp

e
C

on
ve

rs
io

n

J2
R

 T
yp

e
C

on
ve

rs
io

n

SF API
HDFS Plugin

UDF API
MapReduce Plugin

Plugin Layer

Basic R Synax

Frontend
R Statistical Interpreter

Common Framework Layer

Figure 1. System Module Diagram

A. JVM-based R Interpreter
Most of open source computational infrastructures are

JVM-based and the default APIs are written in Java, so it is
hard to integrate the original R written in C and FORTRAN
with them. In order to make it easy for integrating, we
participate in the open source project Renjin [3], which is a
JVM-based R interpreter. Renjin's core borrows heavily from
the original C code. Indeed, many portions remain literal
translations from C to Java. This interpreter can be used in
our system at two places. First, the interpreter acts as a
frontend of the statistical computing environment so that
users can directly write source code with the familiar syntax
in R. Second, in the UDF API model, the interpreter needs to
be invoked by Java code to interpretive execute the
embedded R code.

Since the implementation of the interpreter is too
complex to be illustrated clearly and the most jobs belong to
the open source community, we just present the basic
interpretive execution flow. Fig.2 is the interpretive
execution flow chart.

The frontend of the interpreter consists of two parts: lexer
and parser. The lexer is ported directly from the original R
written in C and the parser is built from the original gram.y
file using the Java extension of the Bison [4] parser generator.
The backend of the interpreter is an evaluator with type
system and other libraries supported. In Fig.2, when users
write R code in the interpreter, the lexer first scans the lines
in the R code and transforms them into token stream; and
then the parser takes the token stream as input and builds
them as an Abstract Syntax Tree (AST); at last, the evaluator
simply descends the AST recursively evaluating symbols,
function calls, and promises as they are encountered. All

control flow statements are implemented as functions and
use exceptions to handle things like break or return.

Lexer

Token Stream
IF,'(',NUM_CONST,GT,NUM_CONST,')',SYMBOL,'(',STR_CONST,')'
 ELSE,NUM_CONST,'+',NUM_CONST,'/',NUM_CONST

Source code in R
if(3>1) print('Hello, World')
else 10+4/2

Parser

Abstract Syntax Tree
if(>(3.0, 1.0),
print("Hello, World"), +(10.0, /(4.0, 2.0)))

Evaluator

Result
Hello, World

Figure 2. Interpretive Execution Flow

B. Java Class Loader and Executor in R
In order to call Java method in R environment, Java class

should be loaded first. In our system, we use general Parents
Delegation Model (PDM) to load Java class, which involves
3 kinds of class loaders: bootstrap, extension, and application
class loader. The delegation model requires that any request
for a class loader to load a given class is first delegated to its
parent class loader before the requested class loader tries to
load the class itself. If a class loader's parent can load a given
class, it returns that class. Otherwise, the class loader
attempts to load the class itself. We use the application class
loader as default to load the Java class, and we provide
jload/import R methods to load Java class, and $ operator to
make the executor to access methods and fields of Java
object.
� jload. Given the path of Java library as an argument of

jload, users can add the path into the search class paths
of application class loader. When you want to load the
class next time, the application class loader can find it
directly.

� import. After the path is added by jload methods, users
can use import method to load the class by specifying
the full class name. Then users can use the short name of
the class in R environment.

� $ operator. We regard Java HashMap object as an
example in Fig.3. When import methods are invoked, an
environment R object is created at the same time. The
information of the fields, methods and constructors of
the class is analyzed by reflective mechanism and is
transformed into symbol-value pairs. Environment is
consisted of two things: a frame and a pointer to an

30

enclosing environment. The frame consists of a set of
symbol-value pairs, an enclosure (parent environment).
When R searches the value for a symbol that the frame
is examined, its value is returned if a matching symbol is
found. If not, the enclosing environment is then accessed
and the process repeated. Environments form a tree
structure in which the enclosures play the role of parents.

Current Environment
Parent Environment

Symbol Value

Environment Created by
“import”

Parent Environment

Import(java.util.HashMap) HashMap Environment

 map Environment

Environment Created by
“new”

Parent Environment

Symbol Value
 put Function

 values Function

Map HashMap\new()

 contains Function

ValueSymbol
 new Function

Figure 3. Environment Structure

We provide an $ operator to access these symbols, e.g.,
users can use HashMap$new to access the construct of
HashMap and get an instance of HashMap named map. Then
the map also exists as an environment object with HashMap
symbol-value pairs. So users can use map$put (1, foo) to call
HashMap methods or fields.

C. R2J and J2R Type Conversion
Automatically type conversion occurs only in the

presence of context switching, e.g., when calling Java
method from R environment or interpretive executing the
embedded R code from Java. Both the parameters and return
values are needed type conversions.

R2J and J2R type conversion only can automatically
convert the basic atomic type between R and Java. For other
types, the Java special object except for the above basic type
is transformed into an environment R object as mentioned
before, and users operate $ to this Java special object.

R has six basic types: logical, integer, real, complex,
character, and raw. The data type in Java can be partitioned
into two categories: integer types (Boolean, Char, Byte,
Short, Int, and Long) and floating point types (Float and
Double). The corresponding Java classes are Boolean, String,
Short, Integer, Long, Float, and Double, they can also be
taken as basic data types.

For our initial work, as the complex is not the basic type
in Java, we use the external library. Table I shows the type
conversion rules.

R is a dynamic typing language and Java is a static typing
language, so J2R is easy but R2J needs some dynamic type
conversion in R itself.

TABLE I. TYPE CONVERSION RULES

Java Basic Type R Basic Type
“Boolean”, “boolean” logical
“Short”, “short” , “Integer”, “int” integer
“Double”, “double”, “Float”, “float”, “Long”, “long” real
“String”, “char[]” character
“Byte” ,“byte” raw

D. Hadoop Plugin
Plugin layer is at the top of common framework layer.

There are two kinds of plugins: SF plugin and UDF plugin.
Fig.4 shows the structure of them and usually the plugins are
written in R and Java language by hybrid programming. The
part written in R gives user simple R API which is used in R
statistical computing. In SF plugin, such as HDFS or Giraph
plugin, the part written in Java can be some capsulation of
the complex original API that the computational
infrastructure offered. In UDF plugin, the code generator
may generate the framework code with user defined R code
embedded, and byte code generator may compiler these
generated Java code into Java jar file which can run on
computational infrastructure.

HDFS plugin and MapReduce plugin are used to report
our experience on integrating R with Hadoop.

SF Plugin

Java Capsulation

Original API

R SF API

UDF Plugin

R UDF API

Java Code
Generator

Byte Code
Generator

Figure 4. SF Plugin and UDF Plugin Structure

� HDFS Plugin

Fig.5 shows the HDFS plugin structure. The R API part
gives user simple R API which can be directly used to access
the HDFS clusters; the Java capsulation part shields the
complex details of HDFS API and reduce the difficulty of
calling Java with the jload\import\$ operator.

HDFS Plugin
R API

Java
Capsulation

HDFS API

HDFS
Cluster Storage

Input
HDFS Access

Request

Output
Status or Content in

HDFS Cluster

Figure 5. HDFS Plugin Structure

31

HDFS plugin provides basic connectivity to the HDFS. R
programmers can browse, read, write, and modify files
stored in HDFS.
� MapReduce Plugin

Integrating MapReduce with R needs the plugin to
generate code with embedded R method such as map or
reduce function. Fig.6 shows the structure of MapReduce
plugin. With providing Hadoop or MapReduce API, the code
of each MapReduce job consists of the following four parts:
1) code for submitting, this part needs to deal with Job
submission parameters (including the input and output path,
etc.), and specify the configuration of Mapper class and
Reducer class; 2) mapper code written in R, in which the
user defined map method; 3) reducer code, in which the user
defines reduce method written in R; 4) combiner code,
usually in order to reduce communication overhead.
Combined phase can reduce the key/value pair produced by
map phase in advance.

MapReduce Plugin

Mapper CodeCode for Job
Submit

Java Code
Generator Module

map() in R
Combiner Code

reduce() in R
Reducer Code
reduce() in R

Byte Code
Generator Module

JAR File
Byte Code File

Embedded R code

HadoopClusters

Submit and Run on Hadoop

Input
 1) Type of Input Key-Value Pair
 2) User Defined Source Code in R

Figure 6. MapReduce Plugin Structure

V. EXPERIMENT AND ANALYSIS

We have implemented the Hadoop HDFS plugin and
MapReduce plugin in JRBridge framework..

A. Test Setup
Counting word occurrences in a large document

collection is a typical example used to illustrate the
MapReduce technique. The data set is split into smaller
segments and the map function is executed on each data
segments. The map function produces a <key, value> pair for
every word that it encounters. Here, the same word is the key
and the value is 1. The framework groups all the pairs, which
have the same key (same word) and invokes the reduce
function passing the list of values for a given key. The
reduce function adds up all the values and produces a count
of values for the particular key, which in this case is the
number of occurrences of a particular word in the document
set.

Hadoop cluster consists of one master node and five
work nodes. Each node is assigned to 4GB memory, and two

processors of 2.40GHz with Java Development Kit 6.0 and
Apache Hadoop 0.20.203 installed on Fedora 15 operating
system. Compared with the original R, we deploy R 2.14.0
on the master too. Among these 6 nodes, Hadoop Job
Tracker and Name Node are deployed on the master node
with our JRBridge system.

In the experiment, we only need to code in the JRBridge
system on the master node and watch the Hadoop monitor
webpage to get the performance statistics. We use the HDFS
plugin to produce 5, 10, 50, 100, 200, 400, and 800 million
words into HDFS clusters to test the function of access
HDFS from R environment. In order to test the function of
writing MapReduce in R with MapReduce plugin, we write
wordcount code in R to process the datasets produced by
HDFS plugin. Table II shows the dataset size in performance
experiment when doing wordcount statistical computing
from small data size to large data size.

TABLE II. DATASET SIZE IN PERFORMANCE EXPERIMENT

Number of Words in
Millions

Data Size in MB

5 52.27
10 104.53
50 522.61

100 1045.21
200 2090.35
400 4180.78
800 8361.43

B. Performance and Scalability
Fig.7 shows the result of the performance comparison

among the original R code, generated jar with embedded R
by Hadoop plugin on our JRBridge system, and the original
wordcount program written in Java.

5 10 50 100 200 400 800
0

1000

2000

3000

4000

5000

6000

7000

8000

Number of words in millions

Ti
m

e
in

 s
ec

on
ds

R
Hadoop
JRBridge

Figure 7. Performance Comparison

As the original R can only operate the dataset entirely in
main memory, the original R code firstly use scan method to
read the whole dataset into memory and then use new.env
with hash=TRUE option to create a hash table to store the
word and its count. The time original R consumed involves
two parts: one for reading the data into memory, and another
for statistic in memory. As the result shows, when size of
dataset is reaching 4GB (the memory size of master node),
and the time consumed is increased rapidly. When the size of

32

dataset is 8GB, the original R nearly crashed. There is a
missing data in Figure 7 when the number of words reaches
800 million.

By writing R code with the MapReduce plugin API, our
JRBridge system will generate the jar file with embedded R
code to run on Hadoop clusters. As the Hadoop can do
distributed parallel computing automatically on 5 work
nodes, the time of JRBridge is nearly reduced to 1/7 of R. As
we can see in Figure 7, both JRBridge and original Hadoop
scale linearly with the size of the dataset and thus provide a
scalable solution.

Performance of our JRBridge is still not very good
enough. The time of JRBridge is nearly twice than that of
original R. The reasons for this are as follows: 1) all input
and output key/value pairs need to be transformed between R
object and Java object; 2) the JVM-based interpreter must be
initialized at each setup for the map or reduce tasks, and the
embedded R code must be interpretive executed which is not
so fast as pure Java.

With increasing maturity, both the relative difference
between systems as well as the total execution time can
decrease further. Indeed, our initial work on JRBridge has
already led to multiple improvements on large-scale
statistical computing in R.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present JRBridge, a framework for
large-scale statistical computing in R. JRBridge provides a
feature-rich and scalable framework for integrating R and
JVM-based open source computational infrastructures. With
detailed analysis on how to integrate R with popular open
source infrastructures, we propose SF and UDF integration
models. We build this framework with 4 common
components to follow these two integration models, and we
also do some initial works on integrating R and Hadoop by
implementing the HDFS plugin and MapReduce plugin. The
experiment results show that the integrating R and Hadoop
with JRBridge scale linearly with the size of the dataset and
thus provides a scalable solution on large-scale statistical
computing in R.

But the experiment results also show that the
performance of JRBridge is still suboptimal. We expect
significant performance improvements in the future as this
technology matures. Since we only focus on integrating R
and Hadoop, it is evident that our framework is potentially
applicable to other JVM-based computational infrastructures.
Our ultimate vision is to use JRBridge to integrate R with
various infrastructures to make R benefited from decades of
experience on large-scale data process. For ongoing work,
we will improve the performance of JRBridge, such as
reduce the time of type conversion and interpretive execution,
and then improve our integration model when designing the
plugin for other infrastructures such as Giraph, S4 or other
coming infrastructures.

ACKNOWLEDGMENT

This work is supported by National Natural Science
Foundation under grant No.61003007 and Wuhan
Chenguang Program under grant No.201271031369.

REFERENCES

[1] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H.
Liu, P. Wyckoff, and R. Murthy. “Hive: a Warehousing Solution
Over a Map-Reduce Framework,” Proc. VLDB Endowment 2009,
Lyon, France, 2009, Vol.2, pp.1626-1629.

[2] A. Lisa, A. Henrique, B. Ranjita, E. Frank, K. Richard, S. Philipe, P.
Yoonho, and V. Chitra. “SPC: a Distributed, Scalable Platform for
Data Mining,” Proc. 4th International Workshop on Data Mining
Standards, Services and Platforms (DMSSP'06), Philadelphia, PA,
2006, pp. 27-37.

[3] A. Bertram (2010) Renjin Project on Google Code website [Online].
Available: http://code.google.com/p/renjin/.

[4] A. Demaille, J. E. Denny, and P. Eggert. (2011) Bison: GNU Parser
Generator. [Online]. Available: http://www.gnu.org/software/bison/.

[5] C. T. Chu, S. K. Kim, and Y. A. Lin. “MapReduce for Machine
Learning on Multicore”, Proc. Neural Information Processing
Systems Conference (NIPS’06), 2006, pp. 306-313.

[6] D. T. Lang. (2012) Package RJSONIO [Online]. Available: ftp://h64-
50-233-
100.mdsnwi.tisp.static.tds.net/pub/cran/web/packages/RJSONIO/RJS
ONIO.pdf.

[7] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N.
Leiser, and G. Czajkowski. “Pregel: A System for Large-Scale Graph
Processing,” Proc. the 2010 ACM SIGMOD International Conference
on Management of Data (SIGMOD’10), Indianapolis, Indiana, 2010,
pp.135-146.

[8] L. L. Rocca, J. H. Badsberg, and C. Dethlefsen. “The giRaph package
for graph representation in R,” Proc. 2nd International R User
Conference, 2006, Vienna, Austria, p.102

[9] H. Yu. (2010) Rmpi: Interface to MPI [Online]. Available:
http://cran.r-project.org/web/packages/Rmpi/index.html

[10] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. H. Bae, J. Qiu, and
G. Fox. “Twister: A Runtime for Iterative MapReduce,” Proc. 19th

ACM International Symposium on High Performance Distributed
Computing (HPDC'10), Chicago, 2010, pp. 810-818.

[11] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing
on Large Clusters,” Proc. OSDI'04, San Francisco, CA, 2004, pp.
137-150.

[12] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Eltabakh, C.
C. Kanne, F. Ozcan, and E. J. Shekita. “Jaql: a Scripting Language
for Large Scale Semistructured Data Analysis Data Analysis,” Proc.
VLDB'11, Seattle, Washington, 2011, pp.1272-1283.

[13] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. “S4: Distributed
Stream Computing Platform,” Proc. IEEE International Conference
on Data Mining Workshops (ICDMW’10), Sydney, NSW, 2010,
pp.170 - 177.

[14] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. “Dryad:
Distributed Data-Parallel Programs from Sequential Building
Blocks,” Proc. 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems (Eurosys'07), New York, 2007, pp.59-72.

[15] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
“Spark: Cluster Computing with Working Sets,” Proc. 2nd USENIX
conference on Hot Topics in Cloud Computing (HotCloud'10),
Boston, 2010, pp.10-16.

[16] M. Schmidberger, M. Morgan, D. Eddelbuettel, H. Yu, H. Tierney,
and U. Mansmann, “State of theArt in Parallel Computing with R,”
Journal of Statistical Software, Vol. 31, No. 1, August 2009, pp.219-
221.

[17] N. Marz (2011) Storm Project on Github website [Online]. Available:
https://github.com/nathanmarz/storm/.

[18] N. Samatova. “pR: Introduction to Parallel R for Statistical
Computing,” Proc. of CScADS Scientific Data and Analytics for
Petascale Computing Workshop 2009, pp. 505-509.

[19] NexR. (2011) RHive: R and Hive. [Online]. Available: http://cran.r-
project.org/web/packages/RHive/index.html

33

[20] O. Chistopher, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
“Pig Latin: A Not-So-Foreign Language for Data Processing”, Proc.
2008 ACM SIGMOD International Conference on Management of
Data (SIGMOD'08), New York, 2008, pp. 1099-1110.

[21] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. “Zookeeper: wait-
free coordination for internet-scale systems,” Proc. USENIX ATC’10,
Boston, MA, 2010.

[22] Rexer Analytics (2010) The Rexer Analytics website. [Online].
Available: http://www.rexeranalytics.com/Data-Miner-Survey-
Results-2010.html.

[23] K. Rexer. The 4th Annual Data Miner Survey-2010 Survey Summary
Report, Presented at Predictive Analytics World (PAW'10), 2010

[24] S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla, P. J. Haas, and J.
McPherson. “Ricardo: Integrating R and Hadoop,” Proc. 2010 ACM
SIGMOD International Conference on Management of Data
(SIGMOD’10), Indianapolis, Indiana, 2010, pp. 987-998.

[25] S. Guha (2011) RHIPE - R and Hadoop Integrated Processing
Environment. [Online]. Available: http://ml.stat.purdue.edu/rhipe/.

[26] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop: Efficient
Iterative Data Processing on Large Clusters,” Proc. VLDB
Endowment 2010, Vol.3, pp.285-296.

34

