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Abstract—Demands for highly scalable parallel data processing 
platforms is raising due to an explosion in the number of 
massive-scale data intensive applications both in industry and
in sciences. Performing statistical computing over huge data 
repositories poses a significant challenge to existing statistical 
software and computational infrastructure. After analyzing
various open source computational infrastructures and their 
programming paradigm APIs, the results have shown that 
most of them are JVM based, and their APIs are given as Java 
interfaces or abstract classes. This paper proposes a generic 
framework JRBridge, which can integrate R and JVM-based 
computational infrastructures by generating Java APIs code 
wrapper around the native R code automatically and handling 
type conversion. Using this framework, we build a distributed 
statistical computing environment by integrating R with 
Hadoop. With the Hadoop Distributed File System plugin, it 
brings a way to store and access datasets with millions of 
objects. With MapReduce plugin, it brings a natural 
environment to code MapReduce algorithms in R. The 
experiment result shows JRBridge scales linearly with the size 
of the datasets and thus provides a scalable solution for large-
scale statistical computing in R. 

Keywords- R Language; JVM; Hadoop; MapReduce; 
Statistical Computing Method

I. INTRODUCTION

Data explosion springs up in many research fields such as 
astronomy, information retrieval, and social network. 
Knowledge buried in these enormous datasets is so 
invaluable that the ability to apply sophisticated statistical 
analysis methods to the data is becoming more and more 
essential. Performing statistical computing over huge data 
repositories poses a significant challenge to existing 
statistical software and data management systems. 

Statistical software provides rich functionalities for data 
analysis, which only can handle limited amounts of data. For 
example, popular tools like R operate entirely in main 
memory with a single server. The system provides a 
comprehensive environment for statistical computing, 
including a concise statistical language, well tested libraries 
of statistical algorithms for data exploration and modeling, 
and also visualization facilities. We focus on the highly 
popular R statistical analysis program, which have overtaken
other tools with closer to 43% data miners in 4th annual data 
miner survey [22-23]. Comprehensive R Archive Network 
(CRAN) contains a library with nearly 3000 add-in packages, 
covering areas such as linear and generalized linear models, 

statistical tests, time series analysis, classification, clustering. 
They simply fail when the data becomes too large. Some 
analysts try to avoid this shortcoming by using the most 
powerful machine available, but vertical scalability is 
inherently limited and expensive. Others try to work only on 
the subsets or samples of the data [5]. 

On the other hand, large-scale computational 
infrastructures can scale to data in petabyte scale, but provide 
only insufficient analytical functionalities. There are many 
infrastructures designed for different computational 
requirements, such as Hadoop and Dryad [14] for dataflow 
computing, Pregel [7] and Giraph [8] for graph computing, 
Haloop [26], Twister [10] and Spark [15] for iterative 
computing, Yahoo! S4 [13] and Twitter Storm [17] for 
stream computing. Only Hadoop and Storm support multi-
language programming by Hadoop Streaming and Storm 
Multi-Language protocol. Most of them only open their own 
low-level APIs for users, and users cannot write code in R
directly to support own their programming paradigm at the 
same time. Besides this, there are some high-level 
declarative languages such as Jaql [12], Pig [20] or Hive [1] 
for Hadoop, but they do not deliver the rich analytic 
functionality supported by other statistical software like R. 

In a word, R provides rich functionalities for data 
analysis, but cannot support large datasets. On the contrary, 
large-scale computational infrastructures scale to large 
datasets, but have limited analytical functionalities and most 
of them cannot bring their computational capability to R. 

We propose a framework JRBridge which can integrate R
and JVM-based computational infrastructures. The idea is to 
generate Java APIs code wrapper around the native R code 
automatically, handle type interchange between R and Java 
transparently. Using this framework, we build a distributed 
statistical environment by integrating R with Hadoop. With 
the Hadoop Distributed File System (HDFS) plugin, it brings 
a way to store and access datasets with millions of objects in 
HDFS. With MapReduce [11] plugin, it brings a natural 
environment to code MapReduce algorithms in R. 

II. RELATED WORKS

Prior works on large-scale data process in R are classified 
by scaling out R, SQL-based integration and Hadoop 
Streaming based integration.
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A. Scaling Out R
Existing approaches to bring R into large-scale data 

process are mainly classified by low-level message passing 
and high-level automatic parallelization.

Both Rmpi [9] and rpvm [16] are message-passing type. 
They are simple wrappers for their respective parallel 
computing middleware. Usage of message-passing systems 
require significant expertise in parallel programming such as 
how to define explicit data distribution and inter-processor 
communication schemes. Most of all, these systems require a 
tightly connected cluster, where fault tolerance, redundancy 
and elastic are not provided. At the higher level, there have 
been some promising systems which can support automatic 
parallelization such as pR [18].

Here are two major innovations in the recent pR design. 
The first one is runtime analysis/parallelization. They 
perform dynamic dependency analysis before interpreting R
statements; identify tasks and loops that can be parallelized. 
The second one is that they perform incremental analysis 
which delays the processing of conditional branches and 
dynamic loop bounds until the related variables are evaluated. 
Key feature of pR is that it analyses a sequential R source 
script dynamically and transparently, and parallelizes its 
execution accordingly. The results of partial execution are 
collected to perform further analysis in runtime. The 
framework does not require any modifications to the native R
environment. But this works is only for non-interactive batch 
jobs and sequential processing tasks where the dataset fits in 
main memory on a single machine. 

B. SQL-based Integration 
There are many SQL-based data warehouse systems

designed to simplify tasks with writing analysis flows on 
Hadoop, such as Hive, Pig, Jaql. These systems mostly 
provide a mechanism to project structure schema on data and 
query the data using a SQL-like language. RHive [19] is the 
bridge between R and Hive, and Ricardo [24] is the bridge 
between R and Jaql. Ricardo is also suboptimal to beat a 
custom-written Hadoop job in Java, for the inner data 
serialization and SQL parsing phrases taking additional time. 

Ricardo proves that many deep analytical problems can 
be decomposed into a “small-data part” and a “large-data 
part”. It consists of three components: small-data part 
executed in R, large-data part, and R-Jaql bridge. The large-
data part is executed in the Hadoop/Jaql Data Management 
System (DMS). R-Jaql bridge provides communication and 
data conversion facilities for integrating these two different 
platforms.

R serves as an interactive environment for the data 
analyst. For classical R usage, the data itself is not memory-
resident in R. Instead, the base data is stored in a distributed 
file system with Hadoop cluster, which consists of a set of 
worker nodes that both store data and perform computations. 
Jaql is an open source data flow language, and it provides a 
high-level language to process and query Hadoop data, 
compiling into a set of low-level MapReduce jobs with 
JSON views to solve different data type between R and 
Hadoop. The bridge with a R package provides integration 
module between Jaql and R. 

Moreover, Ricardo does not support writing MapReduce 
algorithms in R directly. If Ricardo packages cannot meet the 
demands of particular analysis or analysts want to write their 
own special algorithms, they have to re-implement the 
lower-level Java MapReduce code and then bind them to 
Jaql as user defined functions, which means an analyst who
uses Ricardo needs to be an expert in Jaql and Java 
MapReduce programming at the same time. 

C. Hadoop Streaming based Integration 
Hadoop provides an API that allows user to write map 

and reduce functions in languages except Java. Hadoop 
Streaming uses UNIX standard streams as the interface 
between Hadoop and user’s executable program, so user can 
choose any languages which can read standard input and 
write to standard output for MapReduce program.

With Hadoop Streaming, R user only can focus on the 
input and output data interchange between R and Java.  Since 
the type conversion gap exists between R and Java, 
serialization technologies must be used in these multiple-
language systems. Both RHIPE [25] and RHadoop [23] are 
based on Hadoop Streaming. Users write the map and reduce 
function in native R code, which executes on the original R
environment installed on each node. RHIPE uses Google’s 
Protobuf library and RHadoop uses RJSONIO [6] library to 
solve the problem of data type transformation between Java 
and R. 

So Hadoop Streaming can give a way for writing 
MapReduce algorithms in R directly, which means it is more 
smart and convenient than SQL-based integration for users 
to design their own algorithms. Storm Multi-Language 
protocol is another streaming-like integration method.

Till now, it shows that only few infrastructures are 
integrated with R, such as MPI, Hadoop, and Storm. These 
methods are too special to use by other infrastructures such 
as graph computing or streaming computing. Our motivation 
is to design a generic framework for integrating R with 
various infrastructures to make R benefited from decades of 
experience on large-scale data process.

III. DESIGN PHILOSOPHY

A. Offline Batch Processing
Hadoop composes with HDFS bundled with an 

implementation of Google’s MapReduce paradigm and 
offers a scalable infrastructure for processing massive 
amounts of data. 

HDFS takes care of the files distribution and replication 
across the nodes in Hadoop cluster. HDFS is written in Java, 
the Java class DistributedFileSystem is an implementation of 
the abstract class FileSystem, which is the way end-user code 
interacts with. An application that wants to store/fetch data 
to/from HDFS should construct a DistributedFileSystem Java 
object with Hadoop configuration, and then call the member 
function (API functions) of this object to access the HDFS.

We name this kind of API with the following features as 
Static Function API (SF API): 
� The core functions of this kind of API are static and 

fully implemented by the backend infrastructures. There 
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is no need for developer to write any new embedded 
codes to achieve those functions.

� Most of SF API can be looked as a Remote Procedure 
Call (RPC) with arguments and a return value. 
Developers only need a runtime environment as a client 
to send the RPC request with specified arguments; and 
then the reply will be received and processed by the 
backend. At the end of RPC, the backend sends a
response back to the client.

MapReduce programming model and API are briefly 
presented as follows:
� The computation takes a set of input key/value pairs <K1, 

V1>. 
� Mapper takes an input pair <K1, V1>, and produces a set 

of intermediate key/value pairs <K2, V2> by calling the 
map method written by user. 

� Reducer accepts an intermediate key/value pairs <K2, 
V2>, merges together these values to form a possible 
smaller set of values, and produces a set of output 
key/value pairs <K3, V3> by calling the reduce method 
written by user. 

� If a combination function is used, it is the same form for
the reduction function (and is an implementation of 
reducer in Java), except its output types are the 
intermediate key and value types <K2, V2>, so they can 
feed the reduce function.

By default, the user must write MapReduce program in 
Java by extending the Mapper and Reducer class with re-
implemented map and reduce methods.

We name this kind of API with the following features as 
User Define Function API (UDF API):
� The most important difference between SF API and 

UDF API is that the functions cannot be fully 
implemented by the backend alone, which is only a 
framework. Developers should write code embedded 
into the framework to implement the user define 
function. Developers should implements the map and 
reduce method for their special UDF API. 

� There must be a runtime environment on each node 
since the user code must be distributed to each work 
node of the cluster. So a type conversion mechanism 
between R and Java is also needed here.

B. Bulk Synchronous Parallel Model Graph Computing
Bulk Synchronous Parallel (BSP) model is used in many 

graph computing infrastructures such as Google Pregel [7] 
and Apache Giraph [8].  User should switch to the “think like 
a vertex” model of programming. It can be simply defined as 
the combination of three attributes:
� A number of components just like the vertex in a graph, 

each vertex performing processing, keeping graph status, 
or sending message to other components in graph.

� A router that delivers messages point to point between 
pairs of components.

� Facilities of synchronizing all or subset of the 
components at special condition. A computation consists 
of a sequence of super-steps. In each super-step, every
component is allocated to a task consisting of several

combinations of local computation steps, message 
transmissions and message arrivals from other 
components. The machine proceeds to next super-step 
until a global check is made to ensure the last super-step 
has been completed by all components.

Take the open source Giraph as an example. At first, the 
master gets the appropriate number of splits for the 
application and writes them to Zookeeper [21]. Then the 
worker will read vertices from one or more splits, and 
executes the compute method for every vertex assigned to 
this worker per super-step and buffer the incoming messages 
to every vertex for the next super-step.

C. Stream Computing
There are many programming model used in stream 

computing such as Pub-Sub model for IBM SPC [2], Actors 
model for Yahoo! S4, Spout\Bolt model for Twitter Storm. 
The S4 and Storm are open source infrastructures.

S4 is written in Java. Developers write PEs in the Java 
programming language. PEs are assembles into applications 
using the Spring Framework. The processing element API is 
fairly simple and flexible UDF API. Developers essentially 
implement two primary handlers: an input event handler 
processEvent() and an output mechanism output(). In 
addition, developers can define some state variables for the 
PE. processEvent() is invoked for each incoming event of the 
types subscribed by PE. This method implements the logic 
for input event handing, typically an update of the internal 
PE state. output() method is an optional method that can be 
configured for invoking in variety of ways. It can be invoked 
either at regular time intervals t, or on receiving n input 
events, in the case where n=1. output() method implements 
the output mechanism of the PE, typically to release internal 
state of the PE to some external systems. 

D. SF API and UDF API Integration Pattern
With above analyses on how to integrate R with popular 

open source infrastructures, we deduce the common pattern 
as follows:
� Most open source computational infrastructures are 

JVM-based, and the default APIs are written in Java.
� Most APIs are simple and flexible, and can be classified 

by SF API and UDF API.
In order to integrate R with these open source 

computational infrastructures with above common patterns, 
we need to design four key components: an engine to 
interpret R from Java, R2J (convert R objects to Java objects), 
J2R (convert Java objects to R objects), Java class loader and 
executor in R environment.

IV. PROTOTYPE SYSTEM IMPLEMENTATION

The module diagram (Fig.1) of system consists of three 
layers: plugin layer, common framework layer, and 
computation infrastructures layer. When users write source 
codes with the familiar syntax in R statistical programming 
language, they can also use the SF API and UDF API 
provided by the plugin layer, with which R code can be 
transformed by common framework layer to run on the 
variety of open source computational infrastructures in the 
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computation infrastructure layer. So users can do large-scale 
statistical computing in R by integrating R with computation 
infrastructures.

The four components build a bridge between R and JVM-
based open source computational infrastructures by 
cooperation with the SF API and UDF API integration model.

Computational Infrastructures Layer

JVM-based Interpreter for R 

Java Class Loader and Executor in R Environment

Offline Batch Process BSP Model Graph 
Computing Stream Computing

R
2J

 T
yp

e 
C

on
ve

rs
io

n

J2
R

 T
yp

e 
C

on
ve

rs
io

n

SF API
HDFS Plugin

UDF API
MapReduce Plugin

Plugin Layer

Basic R Synax

Frontend
R Statistical Interpreter

Common Framework Layer

Figure 1. System Module Diagram

A. JVM-based R Interpreter
Most of open source computational infrastructures are 

JVM-based and the default APIs are written in Java, so it is 
hard to integrate the original R written in C and FORTRAN 
with them. In order to make it easy for integrating, we
participate in the open source project Renjin [3], which is a 
JVM-based R interpreter. Renjin's core borrows heavily from 
the original C code. Indeed, many portions remain literal 
translations from C to Java. This interpreter can be used in 
our system at two places. First, the interpreter acts as a 
frontend of the statistical computing environment so that 
users can directly write source code with the familiar syntax 
in R. Second, in the UDF API model, the interpreter needs to 
be invoked by Java code to interpretive execute the 
embedded R code.

Since the implementation of the interpreter is too 
complex to be illustrated clearly and the most jobs belong to 
the open source community, we just present the basic 
interpretive execution flow. Fig.2 is the interpretive 
execution flow chart.

The frontend of the interpreter consists of two parts: lexer 
and parser. The lexer is ported directly from the original R
written in C and the parser is built from the original gram.y
file using the Java extension of the Bison [4] parser generator. 
The backend of the interpreter is an evaluator with type 
system and other libraries supported. In Fig.2, when users 
write R code in the interpreter, the lexer first scans the lines 
in the R code and transforms them into token stream; and 
then the parser takes the token stream as input and builds 
them as an Abstract Syntax Tree (AST); at last, the evaluator 
simply descends the AST recursively evaluating symbols, 
function calls, and promises as they are encountered. All 

control flow statements are implemented as functions and 
use exceptions to handle things like break or return. 

Lexer

Token Stream
IF,'(',NUM_CONST,GT,NUM_CONST,')',SYMBOL,'(',STR_CONST,')'   
 ELSE,NUM_CONST,'+',NUM_CONST,'/',NUM_CONST

Source code in R
if(3>1) print('Hello, World') 
else 10+4/2

Parser

Abstract Syntax Tree
if(>(3.0, 1.0), 
print("Hello, World"), +(10.0, /(4.0, 2.0)))

Evaluator

Result
Hello, World

Figure 2. Interpretive Execution Flow 

B. Java Class Loader and Executor in R
In order to call Java method in R environment, Java class 

should be loaded first. In our system, we use general Parents 
Delegation Model (PDM) to load Java class, which involves 
3 kinds of class loaders: bootstrap, extension, and application 
class loader. The delegation model requires that any request 
for a class loader to load a given class is first delegated to its 
parent class loader before the requested class loader tries to 
load the class itself. If a class loader's parent can load a given 
class, it returns that class. Otherwise, the class loader 
attempts to load the class itself. We use the application class 
loader as default to load the Java class, and we provide 
jload/import R methods to load Java class, and $ operator to 
make the executor to access methods and fields of Java 
object.
� jload. Given the path of Java library as an argument of 

jload, users can add the path into the search class paths 
of application class loader. When you want to load the 
class next time, the application class loader can find it
directly. 

� import. After the path is added by jload methods, users 
can use import method to load the class by specifying 
the full class name. Then users can use the short name of 
the class in R environment.

� $ operator. We regard Java HashMap object as an 
example in Fig.3. When import methods are invoked, an 
environment R object is created at the same time. The 
information of the fields, methods and constructors of 
the class is analyzed by reflective mechanism and is 
transformed into symbol-value pairs. Environment is
consisted of two things: a frame and a pointer to an 
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enclosing environment. The frame consists of a set of 
symbol-value pairs, an enclosure (parent environment). 
When R searches the value for a symbol that the frame 
is examined, its value is returned if a matching symbol is 
found. If not, the enclosing environment is then accessed 
and the process repeated. Environments form a tree 
structure in which the enclosures play the role of parents.

Current Environment
Parent Environment

Symbol Value

Environment Created by 
“import”

Parent Environment

Import(java.util.HashMap) HashMap      Environment

   map             Environment

Environment Created by 
“new”

Parent Environment

Symbol Value
    put                 Function

    values            Function

Map HashMap\new()

   contains          Function

     ...                       ...

ValueSymbol
    new                 Function

Figure 3. Environment Structure

We provide an $ operator to access these symbols, e.g., 
users can use HashMap$new to access the construct of 
HashMap and get an instance of HashMap named map. Then 
the map also exists as an environment object with HashMap
symbol-value pairs. So users can use map$put (1, foo) to call
HashMap methods or fields.

C. R2J and J2R Type Conversion
Automatically type conversion occurs only in the 

presence of context switching, e.g., when calling Java 
method from R environment or interpretive executing the 
embedded R code from Java. Both the parameters and return 
values are needed type conversions.

R2J and J2R type conversion only can automatically 
convert the basic atomic type between R and Java. For other 
types, the Java special object except for the above basic type 
is transformed into an environment R object as mentioned 
before, and users operate $ to this Java special object.

R has six basic types: logical, integer, real, complex, 
character, and raw. The data type in Java can be partitioned 
into two categories: integer types (Boolean, Char, Byte, 
Short, Int, and Long) and floating point types (Float and 
Double). The corresponding Java classes are Boolean, String, 
Short, Integer, Long, Float, and Double, they can also be 
taken as basic data types.

For our initial work, as the complex is not the basic type 
in Java, we use the external library. Table I shows the type 
conversion rules. 

R is a dynamic typing language and Java is a static typing 
language, so J2R is easy but R2J needs some dynamic type 
conversion in R itself. 

TABLE I. TYPE CONVERSION RULES

Java Basic Type R Basic Type
“Boolean”, “boolean” logical
“Short”, “short” , “Integer”, “int” integer
“Double”, “double”, “Float”, “float”, “Long”, “long” real 
“String”, “char[]” character
“Byte” ,“byte” raw

D. Hadoop Plugin
Plugin layer is at the top of common framework layer. 

There are two kinds of plugins: SF plugin and UDF plugin. 
Fig.4 shows the structure of them and usually the plugins are 
written in R and Java language by hybrid programming. The 
part written in R gives user simple R API which is used in R
statistical computing. In SF plugin, such as HDFS or Giraph 
plugin, the part written in Java can be some capsulation of 
the complex original API that the computational 
infrastructure offered. In UDF plugin, the code generator 
may generate the framework code with user defined R code 
embedded, and byte code generator may compiler these 
generated Java code into Java jar file which can run on 
computational infrastructure.

HDFS plugin and MapReduce plugin are used to report 
our experience on integrating R with Hadoop.

SF  Plugin

Java Capsulation 

Original API

R SF API

UDF Plugin

R UDF API

Java Code 
Generator

Byte Code 
Generator

Figure 4. SF Plugin and UDF Plugin Structure 

� HDFS Plugin

Fig.5 shows the HDFS plugin structure. The R API part 
gives user simple R API which can be directly used to access 
the HDFS clusters; the Java capsulation part shields the 
complex details of HDFS API and reduce the difficulty of 
calling Java with the jload\import\$ operator. 

HDFS  Plugin
R API

Java
Capsulation

HDFS API

HDFS
Cluster Storage

Input
HDFS Access 

Request

Output
Status or Content in 

HDFS Cluster

Figure 5. HDFS Plugin Structure 

31



HDFS plugin provides basic connectivity to the HDFS. R
programmers can browse, read, write, and modify files 
stored in HDFS.
� MapReduce Plugin

Integrating MapReduce with R needs the plugin to 
generate code with embedded R method such as map or 
reduce function. Fig.6 shows the structure of MapReduce 
plugin. With providing Hadoop or MapReduce API, the code 
of each MapReduce job consists of the following four parts: 
1) code for submitting, this part needs to deal with Job 
submission parameters (including the input and output path, 
etc.), and specify the configuration of Mapper class and 
Reducer class; 2) mapper code written in R, in which the 
user defined map method; 3) reducer code, in which the user 
defines reduce method written in R; 4) combiner code, 
usually in order to reduce communication overhead. 
Combined phase can reduce the key/value pair produced by 
map phase in advance. 

MapReduce  Plugin

Mapper CodeCode for Job 
Submit

Java Code 
Generator Module

map() in R
Combiner Code

reduce() in R
Reducer Code
reduce() in R

Byte Code 
Generator Module

JAR File
Byte Code File

Embedded R code

HadoopClusters

Submit and Run on Hadoop

Input
     1) Type of Input Key-Value Pair
     2) User Defined Source Code in R

Figure 6. MapReduce Plugin Structure 

V. EXPERIMENT AND ANALYSIS

We have implemented the Hadoop HDFS plugin and 
MapReduce plugin in JRBridge framework..

A. Test Setup
Counting word occurrences in a large document 

collection is a typical example used to illustrate the 
MapReduce technique. The data set is split into smaller 
segments and the map function is executed on each data 
segments. The map function produces a <key, value> pair for 
every word that it encounters. Here, the same word is the key 
and the value is 1. The framework groups all the pairs, which 
have the same key (same word) and invokes the reduce 
function passing the list of values for a given key. The 
reduce function adds up all the values and produces a count 
of values for the particular key, which in this case is the 
number of occurrences of a particular word in the document 
set.

Hadoop cluster consists of one master node and five 
work nodes. Each node is assigned to 4GB memory, and two 

processors of 2.40GHz with Java Development Kit 6.0 and 
Apache Hadoop 0.20.203 installed on Fedora 15 operating 
system. Compared with the original R, we deploy R 2.14.0 
on the master too. Among these 6 nodes, Hadoop Job 
Tracker and Name Node are deployed on the master node 
with our JRBridge system.

In the experiment, we only need to code in the JRBridge
system on the master node and watch the Hadoop monitor 
webpage to get the performance statistics. We use the HDFS 
plugin to produce 5, 10, 50, 100, 200, 400, and 800 million 
words into HDFS clusters to test the function of access 
HDFS from R environment. In order to test the function of 
writing MapReduce in R with MapReduce plugin, we write 
wordcount code in R to process the datasets produced by 
HDFS plugin. Table II shows the dataset size in performance 
experiment when doing wordcount statistical computing 
from small data size to large data size. 

TABLE II. DATASET SIZE IN PERFORMANCE EXPERIMENT

Number of Words in 
Millions

Data Size in MB

5 52.27
10 104.53
50 522.61

100 1045.21
200 2090.35
400 4180.78
800 8361.43

B. Performance and Scalability
Fig.7 shows the result of the performance comparison 

among the original R code, generated jar with embedded R
by Hadoop plugin on our JRBridge system, and the original 
wordcount program written in Java.

5 10 50 100 200 400 800
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1000

2000

3000
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R
Hadoop
JRBridge

Figure 7. Performance Comparison 

As the original R can only operate the dataset entirely in 
main memory, the original R code firstly use scan method to 
read the whole dataset into memory and then use new.env
with hash=TRUE option to create a hash table to store the 
word and its count. The time original R consumed involves 
two parts: one for reading the data into memory, and another 
for statistic in memory. As the result shows, when size of 
dataset is reaching 4GB (the memory size of master node), 
and the time consumed is increased rapidly. When the size of 
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dataset is 8GB, the original R nearly crashed. There is a 
missing data in Figure 7 when the number of words reaches
800 million.

By writing R code with the MapReduce plugin API, our 
JRBridge system will generate the jar file with embedded R 
code to run on Hadoop clusters. As the Hadoop can do 
distributed parallel computing automatically on 5 work 
nodes, the time of JRBridge is nearly reduced to 1/7 of R. As 
we can see in Figure 7, both JRBridge and original Hadoop 
scale linearly with the size of the dataset and thus provide a 
scalable solution.

Performance of our JRBridge is still not very good 
enough. The time of JRBridge is nearly twice than that of 
original R. The reasons for this are as follows: 1) all input 
and output key/value pairs need to be transformed between R
object and Java object; 2) the JVM-based interpreter must be 
initialized at each setup for the map or reduce tasks, and the 
embedded R code must be interpretive executed which is not 
so fast as pure Java.

With increasing maturity, both the relative difference 
between systems as well as the total execution time can
decrease further. Indeed, our initial work on JRBridge has 
already led to multiple improvements on large-scale 
statistical computing in R. 

VI. CONCLUSION AND FUTURE WORK

In this paper, we present JRBridge, a framework for 
large-scale statistical computing in R. JRBridge provides a 
feature-rich and scalable framework for integrating R and 
JVM-based open source computational infrastructures. With 
detailed analysis on how to integrate R with popular open 
source infrastructures, we propose SF and UDF integration 
models. We build this framework with 4 common 
components to follow these two integration models, and we 
also do some initial works on integrating R and Hadoop by 
implementing the HDFS plugin and MapReduce plugin. The 
experiment results show that the integrating R and Hadoop 
with JRBridge scale linearly with the size of the dataset and 
thus provides a scalable solution on large-scale statistical 
computing in R. 

But the experiment results also show that the 
performance of JRBridge is still suboptimal. We expect 
significant performance improvements in the future as this 
technology matures. Since we only focus on integrating R
and Hadoop, it is evident that our framework is potentially 
applicable to other JVM-based computational infrastructures. 
Our ultimate vision is to use JRBridge to integrate R with 
various infrastructures to make R benefited from decades of 
experience on large-scale data process. For ongoing work, 
we will improve the performance of JRBridge, such as 
reduce the time of type conversion and interpretive execution, 
and then improve our integration model when designing the 
plugin for other infrastructures such as Giraph, S4 or other 
coming infrastructures.
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